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Main Topic

Paper topic: a global constraint for weighted average expressions

average([Wi], [Vi], Y) $ Y = round

 Pn�1
i=0 Wi · ViPn�1

i=0 Wi

!

Equivalent for integer variables:



Motivation

Context: workload dispatching for high performance computing

Server room Multi-core Platforms



Motivation

Context: workload dispatching for high performance computing

§ Jobs arrive in batches
§ Jobs are assigned to different machines/cores
§ Local scheduling (by the OS)
§ Obj: maximize worst core efficiency

Mapped Jobs

Avg power

temperature

efficiency

...

...



Motivation

Context: assignment problems with balancing issues 

customer (size = demand)
facility (size = capacity)

Single Source Capacitated Facility Problem
§ Assign customers to facility
§ Meet capacity constraints
...with Fair Travel Times
§ Balance the average travel time per facility



Xi 2 {0..m� 1} 8i = 0. . . n� 1

Which Model?

Modeling Choices:
§ Assignment variables: n = #customers/jobs

m = #facilities/cores

POWER =

Pn�1
i=0 (Xi = k) · poweriPn�1

i=0 (Xi = k)

TTIME =

Pn�1
i=0 (Xi = k) · ttimeiPn�1

i=0 (Xi = k)

Y =

Pn�1
i=0 Wi · viPn�1

i=0 Wi

§ For each facility/core k:

By abstracting a little bit:



Which Model?

How do we model this expression?

n�1X

i=0

Wi · vi = Y ·
n�1X

i=0

Wi

§ Just post it!

Likely weak propagation...

Y =

Pn�1
i=0 Wi · vi

w

§ Fixed denominator

sum constraint! spread and deviation 
to improve filtering

Y =

Pn�1
i=0 Wi · viPn�1

i=0 Wi



Y =

Pn�1
i=0 Xi · viPn�1

i=0 Xi

Which Model?

How do we model this expression?

average([Wi], [Vi], Y)

§ Otherwise, we need a new global constraint:

Here it is!



Filtering

Spring equivalent: average as a bar pulled by metal spring

§ Weights Wi = spring thickness, Values vi = anchor points
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Filtering

Spring equivalent: average as a bar pulled by metal spring

[0,3]

[1,3]

[1,2]

[0,3]

dark light

§ Assumption 1: fixed values (adapted to variable Vi)
§ Assumption 2: continuous domains (adapted to integer domains)

Y



Pruning the Average Variable
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§ Minimize all weights

Y upper bound = right-most position for the bar

§ Scan Wi from right to left



[0,3]

-3 -2 -1 0 1 2 3

[1,2][0,3]
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vi > current avg

Pruning the Average Variable

§ Minimize all weights

Y upper bound = right-most position for the bar

§ Scan Wi from right to left
§ Maximize Wi if:

§ Repeat the process

UB = 1.8

§ WC complexity: O(n)
+ O(n log(n)) for the 
ordering



Y in [-1.80,-0.25]

[0,3]

[1,3]

[1,2]

[0,3]
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Pruning the Weight Variables

Wi upper bound = largest thickness so that the Y 
boundaries are not crossed



[0,3] [1,2]

[0,3]
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Y in [-1.80,-0.25]

[1,3]

vi  max(Y)

vi > max(Y)

Pruning the Weight Variables

Wi upper bound = largest thickness so that the Y 
boundaries are not crossed

§ Maximize Wi if:

§ Minimize Wi if:

YMS

max slack 
configuration

vi > max(Y)

vi < max(Y)

§ UB if
§ LB if



max slack 
configuration
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Y in [-1.80,-0.25]

[1,3]

vi  max(Y)

vi > max(Y)

vi > max(Y)

vi < max(Y)

Pruning the Weight Variables

Wi upper bound = largest thickness so that the Y 
boundaries are not crossed

§ Maximize Wi if:

§ Minimize Wi if:

YMS

§ UB if
§ LB if

By solving: 
num(YMS) + (max(Wi)�min(Wi)) · vi
den(YMS) + (max(Wi)�min(Wi))

 max(Y)

2.846



max slack 
configuration
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Y in [-1.80,-0.25]

[1,3]

vi  max(Y)

vi > max(Y)

vi > max(Y)

vi < max(Y)

Pruning the Weight Variables

Wi upper bound = largest thickness so that the Y 
boundaries are not crossed

§ Maximize Wi if:

§ Minimize Wi if:

YMS

§ UB if
§ LB if

2.846

§ WC complexity: O(n)



Incremental Filtering

Problems of this class can grow pretty large:
§ Thermal Aware Workload Dispatching: 120 to 480 jobs
§ Fair Capacitated Facility Location: 50 customer, 16-50 locations

Incremental filtering can save a lot of computation time

§ Rules for the fixed values case
§ Particularly effective for {0,1} weights
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Incremental Filtering for the Y Variable

UB = 1.8

Store:
§ num(YUB)/den(YUB)

§ Index of the last maximized Wi
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[1,2]
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When a weight changes:

Store:
§ num(YUB)/den(YUB)

§ Index of the last maximized Wi

Incremental Filtering for the Y Variable
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When a weight changes:

Store:
§ num(YUB)/den(YUB)

§ Index of the last maximized Wi

§ Update current avg

cur avg = 0.429

Incremental Filtering for the Y Variable
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When a weight changes:

Store:
§ num(YUB)/den(YUB)

§ Index of the last maximized Wi

§ Update current avg

cur avg = 0.429

Incremental Filtering for the Y Variable



[0,3]

-3 -2 -1 0 1 2 3

[1,2]

[2,3]

[1,3]

[0,3]

-3 -2 -1 0 1 2 3

[1,2]

[2,3]

[1,3]

When a weight changes:

Store:
§ num(YUB)/den(YUB)

§ Index of the last maximized Wi

§ Update current avg
§ Maximize new Wi

UB = 0.5

§ No more than n shifts
§ No more than n × 

dom size updates
§ WC complexity

O(n × dom size)

Incremental Filtering for the Y Variable



Experimental Results

Experiments on:
§ Capacitated Facility Location (max worst case average travel time)
§ Thermal aware workload dispatching: max worst case efficiency
Benchmarks:
§ Problem #1: Single Source instances by Beasley in the OR-Library
§ Problem #1: custom (publicly available) instances

Solution method (goal: testing constraint propagation):
§ Random restarts with fixed threshold
§ Random variable and value selection

Compare with competitor approaches



Results for Capacitated Facility Location
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Conclusion

Main results
§ A global constraint for weighted average expressions
§ Useful for allocation problems with balancing components
§ (Incremental) Filtering algorithms

Future work directions
§ Apply incremental filtering ideas from the sum constraint
§ More application scenarios
§ Devise constraints for other classical inputs to machine learning 

models
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