Feature Term Subsumption using Constraint Programming and Basic Variable Symmetry

Santiago Ontañón Drexel University Philadelphia, USA Pedro Meseguer
IIIA – CSIC
Bellaterra, Spain

Overview

- Feature Terms
- Subsumption
- Constraint Model
- Variable Symmetry
- Experimental Results
- Conclusions

Feature Terms

used in Machine Learning

Example

Subsumption

- $\psi_1 \psi_2$ FT, is ψ_1 more general than or equal to ψ_2 ? ψ_1 subsumes ψ_2 ?
- Subsumption: mapping m: $vars(\psi_1) \rightarrow vars(\psi_2)$
 - total [all variables of ψ_1 have an image]
 - $-root(\psi_2) = m(root(\psi_1))$
 - $-\operatorname{sort}(X) \leq \operatorname{sort}(m(X))$ [more general or equal]
 - for any label f st $X.f = \Psi_1$ and $m(X.f) = \Psi_2$
 - for all Y in Ψ_1 there is a Z in Ψ_2 st m(Y) = Z
 - for all Y, Z in Ψ_1 , if $Y \neq Z$ then $m(Y) \neq m(Z)$

Example

Warning: Subsumption is not graph isomorphism!!

Subsumption Constraint Model

- Given $\psi_1 \psi_2$, find mapping m
- CP Variables = $vars(\psi_1)$
- Domains
 - $-D(\operatorname{root}(\psi_1)) = \{\operatorname{root}(\psi_2)\}\$
 - any other $D=vars(\psi_2)$
- Constraints
 - unary on sorts (n)
 - binary on labels (n^2m)
 - all-different (nm)

Basic Variable Symmetry

- Interchangeable variables: they do not induce any syntactic change when permutting
- X, Y interchangeable: same parent, sort, children

- If *X*, *Y* interchangeable:
 - $-m(X) \neq m(Y)$
 - exists m' equal to m except m'(X)=m(Y), m'(Y)=m(X)
 - symmetry breaking constraint m(X) < m(Y)

Experimental Results

Conclusions

 CP + basic variable symmetry: substantially more efficient than traditional ML methods

- Future work:
 - More sophisticated forms of symmetry
 - Other operations of Feature Terms

Thanks for your attention!

