Including Soft Global Constraints in Distributed Constraint Optimization Problems

Christian Bessiere
U. Montpellier
Montpellier, France

Patricia Gutierrez Pedro Meseguer
IIIA-CSIC
Bellaterra, Spain

Overview

- Soft Global Constraints
- DCOP, solving algorithm: BnB-ADOPT+
- Representations of Soft Global Constraints
 - Direct / Nested / Bounded-arity
- Search with Soft Global Constraints
- Propagation with Soft Global Constraints
- Experimental Results
- Conclusions

Soft Global Constraints

Soft Global =

Global constraint C + violation measure μ tuple t, if t satisfies C, $\mu(t)=0$ if t does not satisfy C, $\mu(t)>0$

- Example: soft-alldifferent(x_1, x_2, x_3, x_4)
 - $-\mu_{var}$: #variables should change value to satisfy the constraint
 - $-\mu_{dec}$: #pairs of variables with the same value soft-alldifferent(a,a,a,b), $\mu_{var}=2$, $\mu_{dec}=3$

DCOP

- (X, D, C, A, α)
- X is a set of variables
- D is a collection of finite domains
- C is a set of cost functions
- A is a finite set of agents
- α maps each variable to one agent (owner)
- Assumption: each variable to a different agent
- Solution: a total assignment of *minimum* cost

DCOP Optimal Solving Algorithms

- SBB, NCBB, DPOP, AFB,....
- BnB-ADOPT+:
 - agents in pseudo-tree
 - messages:
 - VALUE, from parent to child, pseudo-child
 - COST: from child to parent
 - TERMINATE: from parent to child
 - optimum: when LB = UB at root
- BnB-ADOPT+ combined with soft AC:
 - substantial performance improvements

Why Soft Global in DCOPs?

- Most DCOP works:
 - assume binary constraints
 - agents are usually constrained in pairs

But

- expressivity: not every constraint can be expressed as set of binaries, n-ary constraints are badly needed
- efficiency: a soft global constraint
 - often prunes more that its decomposition
 - faster soft GAC (when solving includes soft GAC)

How including Soft Global in DCOPs?

Direct: put the soft global constraint as it is

Nested: for contractible soft global constraints

 Bounded-arity: for binary decomposable, or decomposable with extra variables

Which offers the best performance?

Direct Representation

Put the soft global constraint as it is

 Needed: a DCOP solving algorithm able to solve constraints of any arity

BnB-ADOPT+: efficient solving n-ary constraints

Nested Representation

For contractible soft global constraints:

$$C(x_1,...,x_{k-1}) \le C(x_1,...,x_{k-1},x_k)$$

• Nested decomposition: k-1 constraints $C(x_1,x_2)$, $C(x_1,x_2,x_3)$,, $C(x_1,x_2,...,x_k)$

Replace the soft global C by its nested decomp.

Warning: not counting repeatedly the same costs

Bounded-arity Representation

 Decompositions in a polynomial number of constraints of fixed arity:

- Binary decomposable without extra variables
- Decomposable with extra variables

Replace the soft global C by its decomposition

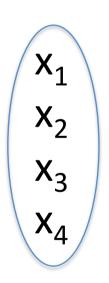
$soft-all different(x_1,x_2,x_3,x_4), \mu_{dec}$

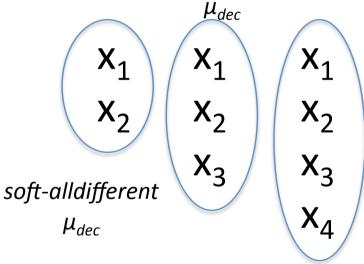
direct

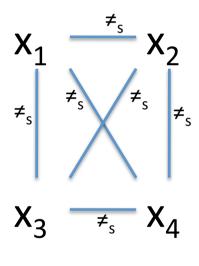
nested

bounded arity

soft-alldifferent







soft-alldifferent, μ_{dec}

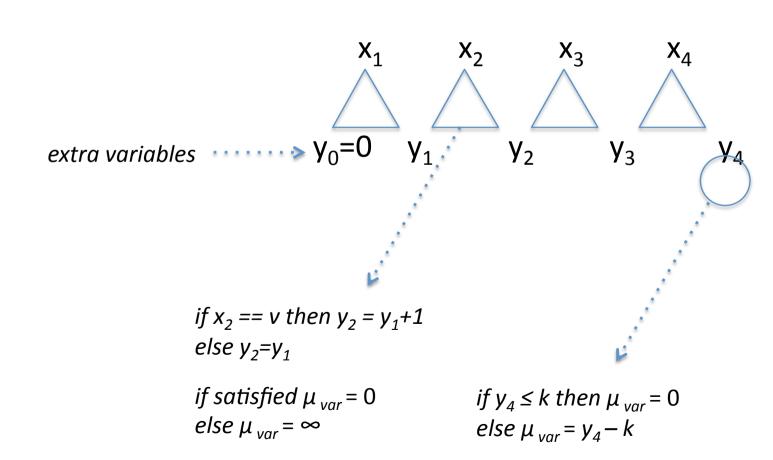
soft-alldifferent, μ_{dec}

soft-atmost $[k,v](x_1,x_2,x_3,x_4)$, μ_{var}

If $\#v \le k$ then $\mu_{var} = 0$ else $\mu_{var} = \#v - k$

Direct, nested: as before

bounded-arity



Search with Soft Global Constraints

 BnB-ADOPT+: the last variable of the scope in the pseudo-tree branch evaluates

Direct, bounded-arity: no problem

 Nested: simple trick to avoid counting twice the same costs

Soft Local Consistency

Costs:

- N-ary: $C_{ijk}(a,b,c)$ Unary $C_i(a)$ soft local consistency
- Zero-ary C_0 :

a lower bound of any solution cost

- NC: (x_i,a) is NC if $C_i(v) + C_0 < T$ (T = upper bound) x_i is NC if its values are NC and there is α st $C_i(\alpha)=0$ problem is NC if all variables are NC
- GAC: (x_{i}, a) is GAC wrt C_{i} if there is tuple t st (x_{i}, a) in t and $C_{i}(t)=0$ x_i is GAC if all values are GAC wrt any cost function of x_i problem is GAC is every variable is GAC and NC

VALUE PRUNING: if a value is not NC it can be pruned

Propagating Soft Global Constraints

- Assumptions in DCOP solving: agent i knows
 - about its variable x_i
 - about the constraints it is involved in
 - nothing else
- Modifications for GAC in DCOP solving:
 - domain of neighbors: represented in agent i although agent i cannot delete a value in D_i
 - New DEL message to notify value deletions
 - BnB-ADOPT+: new info in VALUE & COST messages
- UGAC: unconditional deletions are propagated

Propagating *soft-alldifferent(T)*

Flow-based global constraint [vanHoeve 06]

- Soft-alldifferent = flow graph
 - Minimum cost that can be projected = flow of minimum cost in the graph

Projection-safe [Lee & Leung 09]

Propagating soft-atmost [k,v](T)

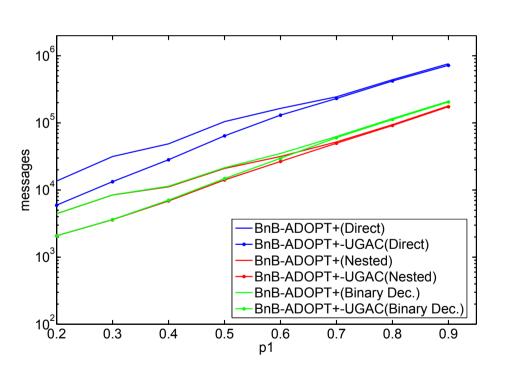
 Evaluator agent counts how many agents in T have singleton domains {v}

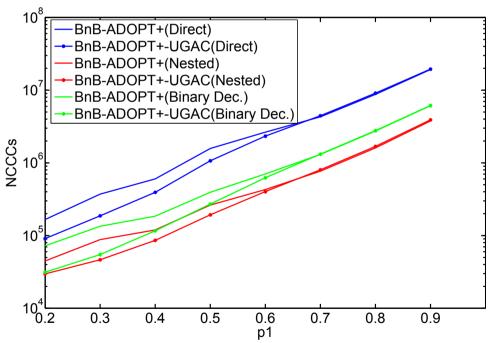
• If greater than k, a minimum cost $\#\{v\}-k$ is added to $C_i(a)$

Agent i: first agent in the constraint

Experimental Results

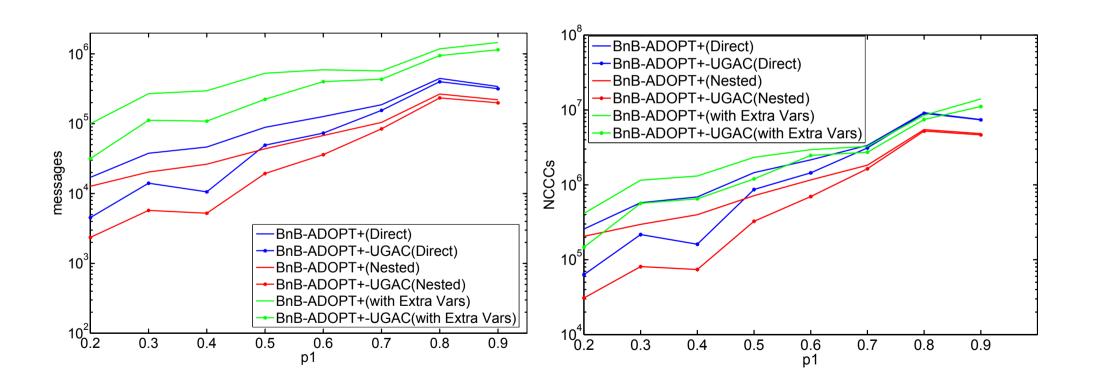
Benchmark: random binary $<10,5,p_1>+2$ soft-alldifferent





Experimental Results

Benchmark: random binary $<10,5,p_1>+2$ soft-atmost



Conclusions

 Soft global constraints: needed in DCOP to increase expressivity

- With soft-alldifferent and soft-atmost as a proof of concept, we observe:
 - Nested representation is the most efficient (only for contractible soft global constraints)
 - UGAC pays off (always in #messages and in most cases in #NCCCs)

Thanks for your attention!