Including
Soft Global Constraints
in Distributed Constraint
Optimization Problems

Christian Bessiere Patricia Gutierrez Pedro Meseguer
U. Montpellier IIA-CSIC
Montpellier, France Bellaterra, Spain

Overview

Soft Global Constraints
DCOP, solving algorithm: BnB-ADOPT+

Representations of Soft Global Constraints
— Direct / Nested / Bounded-arity

Search with Soft Global Constraints
Propagation with Soft Global Constraints
Experimental Results

Conclusions

Soft Global Constraints

* Soft Global =
Global constraint C + violation measure u

tuple t, if t satisfies C, u(t)=0
if t does not satisfy C, u(t)>0

* Example: soft-alldifferent(x,,x,,x5,x,)

— U, #variables should change value to satisfy the
constraint

— Ug.: #pairs of variables with the same value
soft-alldifferent(a,a,a,b), U,,,=2 Uye=3

DCOP

(X, D, C, A

X is a set of variables

D is a collection of finite domains

C is a set of cost functions

A is a finite set of agents

a maps each variable to one agent (owner)
Assumption: each variable to a different agent

Solution: a total assignment of minimum cost

DCOP Optimal Solving Algorithms

* SBB, NCBB, DPOP, AFB,....
* BnB-ADOPT+:

— agents in pseudo-tree

— MmeSSages.
* VALUE, from parent to child, pseudo-child
e COST: from child to parent
* TERMINATE: from parent to child

— optimum: when LB = UB at root
* BnB-ADOPT+ combined with soft AC:

— substantial performance improvements

Why Soft Global in DCOPs?

 Most DCOP works:
— assume binary constraints

— agents are usually constrained in pairs

e But

— expressivity: not every constraint can be expressed as
set of binaries, n-ary constraints are badly needed
— efficiency: a soft global constraint

e often prunes more that its decomposition
* faster soft GAC (when solving includes soft GAC)

How including Soft Global in DCOPs?

* Direct: put the soft global constraint as it is
* Nested: for contractible soft global constraints

* Bounded-arity: for binary decomposable,
or decomposable with extra variables

* Which offers the best performance?

Direct Representation

e Put the soft global constraint as it is

* Needed: a DCOP solving algorithm able to solve
constraints of any arity

 BnB-ADOPT+: efficient solving n-ary constraints

Nested Representation

For contractible soft global constraints:
C(X e Xpq) S CXq,een X, 1,X,)

Nested decomposition: k — 1 constraints
C(x1,X%5), C(X1,X0,X3), woeeey CIX1,X5,0X)

Replace the soft global C by its nested decomp.

Warning: not counting repeatedly the same costs

Bounded-arity Representation

 Decompositions in a polynomial number of
constraints of fixed arity:

— Binary decomposable without extra variables

— Decomposable with extra variables

* Replace the soft global C by its decomposition

soft-alldifferent(x,,X,,X3,X,), U o.

direct

soft-alldifferent, u,,.

nested bounded arity
soft-alldifferent
Hgec X ”s X
@ . | |
¢S ¢S
%, %
-alldi t
soft aud/ﬁeren X3 z. X4

soft-alldifferent, u,,.

soft-atmost [k, v](x{,X5,X3,X,) , U0
If #v <k then u . =0else u,, =#v-k

Direct, nested: as before bounded-arity

extra variables > Yo=0 y1 é

B

ifx,==vtheny,=y,+1 ,
else y,=y, G
if satisfied u ,,,= 0 ify,<kthenu,, =0

else U, = °° else U ,,,=y,—k

Search with Soft Global Constraints

* BnB-ADOPT+: the last variable of the scope in
the pseudo-tree branch evaluates

* Direct, bounded-arity: no problem

* Nested: simple trick to avoid counting twice
the same costs

Soft Local Consistency
* Costs:

soft local consistency

— Zero-ary Cj:) a lower bound of any solution cost

* NC:(x,a)is NCif C(v)+C,<T (T = upper bound)
x; is NC if its values are NC and there is a st C(a)=0
problem is NC if all variables are NC

* GAC: (x,a) is GACwrt C, if there is tuple t st (x,a) in t and C(t)=0
x;is GAC if all values are GAC wrt any cost function of x;
problem is GAC is every variable is GAC and NC

VALUE PRUNING: if a value is not NC it can be pruned

Propagating Soft Global Constraints

e Assumptions in DCOP solving: agent i knows
— about its variable x;
— about the constraints it is involved in
— nothing else

* Modifications for GAC in DCOP solving:

— domain of neighbors: represented in agent j
although agent i cannot delete a value in D,

— New DEL message to notify value deletions
— BnB-ADOPT+: new info in VALUE & COST messages

* UGAC: unconditional deletions are propagated

Propagating soft-alldifferent(T)

* Flow-based global constraint [vanHoeve 06]

e Soft-alldifferent = flow graph

— Minimum cost that can be projected =
flow of minimum cost in the graph

— Projection-safe [Lee & Leung 09]

Propagating soft-atmost [k, v](T)

* Evaluator agent counts how many agentsin T
have singleton domains {v}

* |f greater than k, a minimum cost #{v}-k is
added to C{(a)

e Agent j: first agent in the constraint

messages

Benchmark: random binary <10,5,p,> + 2 soft-alldifferent

Experimental Results

—BnB-ADOPT+(Direct)
——BnB-ADOPT+-UGAC(Direct)
—BnB-ADOPT+(Nested)
——BnB-ADOPT+-UGAC(Nested)
BnB-ADOPT+(Binary Dec.)
BnB-ADOPT+-UGAC(Binary Dec.)

0.3

0.4

0.5

0.6 0.7 0.8 0.9
p1

— BnB-ADOPT+(Direct)
——BnB-ADOPT+-UGAC(Direct)
—BnB-ADOPT+(Nested)
——BnB-ADOPT+-UGAC(Nested)
BnB-ADOPT+(Binary Dec.)
BnB-ADOPT+-UGAC(Binary Dec.)

0.3 0.4 0.5 0.6 0.7

0.8

0.9

messages

Experimental Results

Benchmark: random binary <10,5,p,> + 2 soft-atmost

6 —BnB-ADOPT+(Direct)
——BnB-ADOPT+-UGAC(Direct)
—BnB-ADOPT+(Nested)
7||——BnB-ADOPT+-UGAC(Nested)

| 10— BnB-ADOPT+(with Extra Vars) -
BnB-ADOPT+-UGAC(with Extra Vars) /

—_—
(@)
MR |
1

2]
S 408
: 18 10
i z
— BnB-ADOPT+(Direct)
3 ——BnB-ADOPT+-UGAC(Direct) 10°
107k — BnB-ADOPT+(Nested) E
i ——BnB-ADOPT+-UGAC(Nested)
BnB-ADOPT+(with Extra Vars)
BnB-ADOPT+-UGAC(with Extra Vars)
102 1 1 1 1 1 1 1 104 1 1 1 1 1 1 1

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9
p1 p1

Conclusions

* Soft global constraints: needed in DCOP to
Increase expressivity

* With soft-alldifferent and soft-atmost as a
proof of concept, we observe:

— Nested representation is the most efficient (only
for contractible soft global constraints)

— UGAC pays off (always in #messages and in most
cases in #NCCCs)

Thanks for
your
attention!

