
On the Design of an Adaptive Simulated Annealing
Algorithm

Vincent A. Cicirello

Computer Science and Information Systems
The Richard Stockton College of New Jersey

Pomona, NJ 08240
cicirelv@stockton.edu

Abstract. In this paper, we demonstrate the ease in which an adaptive simulated
annealing algorithm can be designed. Specifically, we use the adaptive annealing
schedule known as the modified Lam schedule to apply simulated annealing to
the weighted tardiness scheduling problem with sequence-dependent setups. The
modified Lam annealing schedule adjusts the temperature to track the theoretical
optimal rate of accepted moves. Employing the modified Lam schedule allows
us to avoid the often tedious tuning of the annealing schedule; as the algorithm
tunes itself for each instance during problem solving. Our results show that an
adaptive simulated annealer can be competitive when compared to highly tuned,
hand crafted algorithms. Specifically, we compare our results to a state-of-the-
art genetic algorithm for weighted tardiness scheduling with sequence-dependent
setups. Our study serves as an illustration of the ease with which a parameter-free
simulated annealer can be designed and implemented.

1 Introduction

One of the often touted advantages of metaheuristic search algorithms such as simu-
lated annealing [1, 2], tabu search [3, 4], genetic algorithms (GA) [5, 6], and the like, is
that they are often argued to be relatively simple to implement for new problems. While
in some sense this is generally true, in another sense this “easy to implement” advan-
tage largely ignores the next step of tuning parameters to actually get the algorithm to
perform well for your problem.

Most metaheuristics are controlled by several parameters. For example, the simple
genetic algorithm (SGA) has a population size, a crossover rate, a mutation rate. GAs
that are slightly fancier than the SGA can have additional parameters such as generation
gap, scaling window, elitism rate, etc.1 Likewise, algorithms such as simulated anneal-
ing (SA) and tabu search (TS) can also have several control parameters. For example,
a run of SA is largely controlled by the value of something called the temperature. The
temperature in SA search generally begins at a high value and decays during execution
of the search. This temperature decay is controlled by something usually referred to
as the annealing schedule. All of the most commonly used annealing schedules have
parameters. These parameters, like the parameters of a GA, must be set in some way.

1 For the sake of this paper, you do not need to know what any of these GA parameters are. The
point is that there can be several of them.



Perhaps the most common approach to tuning the parameters of a GA, SA, TS, or
some other metaheuristic is, unfortunately, a tedious hand-tuning. That is, the algorithm
implementer systematically (or not so systematically) tries out various sets of parame-
ter values on some set of problem instances, and selects the set of parameter values that
appears to perform well. Fortunately, there are others who have taken a more rigorous
approach to the problem. For example, the earliest formal examination of the problem
of parameter tuning in a GA was that of De Jong [7], who studied the performance
of the GA on a class of function optimization problems and empirically determined
an “optimal” set of parameter values for that class of problem. For decades since that
study, De Jong’s parameter set is often used by others in designing GAs for new prob-
lems. However, De Jong’s parameter set is really only relevant for the class of problems
considered in his study. Others later followed De Jong’s lead and began looking for
ways to automate the parameter tuning process. Grefenstette, for example, introduced
the idea of using a GA to optimize the parameters of a GA [8]. Since then, a host of re-
lated meta-level control parameter optimization approaches have been introduced, both
for tuning GA parameters [9–12] as well as for parameters of other problem solving
systems [13–16]. Others view the parameter tuning problem as one that should coin-
cide with problem solving. That is, rather than tuning control parameters ahead of time,
some argue that problem solving feedback can be used to adapt control parameters to
the problem instance at hand (e.g., [17–19]).

In this paper, we too take the approach of adapting control parameters during the
search. Specifically, we focus on simulated annealing and use an existing adaptive an-
nealing schedule to demonstrate the ease with which a parameter-free simulated an-
nealer can be implemented. Our empirical results on the NP-Hard optimization problem
known as weighted tardiness scheduling with sequence-dependent setups illustrates that
such an approach can be competitive with even highly-tuned hand-crafted algorithms.

The remainder of the paper proceeds as follows. In Section 2 we overview simulated
annealing, and specifically describe the adaptive annealing schedule known as Modified
Lam [19]. Next in Section 3 we provide an overview of the weighted tardiness schedul-
ing problem with sequence-dependent setups that we use for our experimental study. In
Section 4 we provide further details on the design of our simulated annealer. We then
present empirical results in Section 5 and conclude in Section 6.

2 The Modified Lam Annealing Schedule

Figure 1 provides pseudocode for the typical Simulated Annealing algorithm. Initially,
SA begins with some arbitrary solution to the problem. This is often randomly gener-
ated, although sometimes it can be the result of some other procedure. SA then consid-
ers a series of random moves from the current state S using a neighborhood function.
For example, if the problem SA is solving is an ordering problem such as the traveling
salesperson problem, then the neighborhood function might be pairwise interchanges
of randomly selected cities from the current ordering. If the state that results is of a
lower cost than the current state, the move is accepted and this new state S ′ becomes
the current state S. Otherwise, if the new state is of higher cost (lesser quality solution),
SA accepts it with probability, e(Cost(S)−Cost(S′))/T . This is known as the Boltzmann



SimulatedAnnealing

S ← GenerateInitialState
T ← Some Initial High Temperature,T0

for i from 1 to Evalsmax
S′ ← PickRandomState(Neighborhood(S))
if Cost(S′) < Cost(S)

S ← S′ {Note: accepting a move }
else

r ← Random(0, 1)

if r < e(Cost(S)−Cost(S′))/T

S ← S′ {Note: accepting a move }
end

end
T ← T0 · α

b i

R
c

end

Fig. 1. Pseudocode for a standard Simulated Annealing algorithm using the common geometric
annealing schedule.

distribution. That is, SA accepts “bad” moves with a probability that depends on how
“bad” that move is and which also depends on the current value of the temperature T .

The problem-solving effectiveness of SA largely depends on the design of what
is referred to as the annealing schedule. The annealing schedule refers to the way in
which the temperature parameter T is updated during the search. The most commonly
used annealing schedule is the geometric schedule, which is also the annealing schedule
suggested by the originators of SA [1]. The geometric annealing schedule is defined as:

T ← T0 · αb i

R
c, (1)

where T0 is an initially “high” temperature, α is referred to as the cooling rate, i is
simply the index of the current evaluation and corresponds to the i in the pseudocode
of Figure 1, and R is the round length which controls how many evaluations are made
for each temperature T . The values of T0, α, and R are all parameters that need to be
tuned during the design of the SA.

A well known theoretical result indicates that if the annealing schedule “cools”
the temperature at a sufficiently slow rate to maintain the system in a state of thermal
equilibrium, then with probability 1 simulated annealing will find the globally optimal
solution. The problem with this result is that it requires such a slow cooling rate that
searches require a prohibitively long annealing run to settle upon a solution.

Lam and Delosme proposed an approximate thermal equilibrium they call D-equi-
librium which balances the trade-off of required computation time and the quality of
the solution found by the run of SA [20]. Under certain assumptions about the forms of
the distribution of the cost values and the distribution of cost value changes, they ana-
lyzed their model and determined the annealing schedule that maintains the system in



SimulatedAnnealing with Modified Lam Annealing Schedule

S ← GenerateInitialState
T ← 0.5
AcceptRate← 0.5
for i from 1 to Evalsmax

S′ ← PickRandomState(Neighborhood(S))
if Cost(S′) < Cost(S)

S ← S′ {Note: accepting a move }
AcceptRate← 1

500
(499 · AcceptRate + 1)

else
r ← Random(0, 1)

if r < e(Cost(S)−Cost(S′))/T

S ← S′ {Note: accepting a move }
AcceptRate← 1

500
(499 · AcceptRate + 1)

else
{Note: rejecting a move }
AcceptRate← 1

500
(499 · AcceptRate)

end
end
if i/Evalsmax < 0.15 then LamRate← 0.44 + 0.56 · 560−i/Evalsmax/0.15

if 0.15 ≤ i/Evalsmax < 0.65 then LamRate← 0.44

if 0.65 ≤ i/Evalsmax then LamRate← 0.44 · 440−(i/Evalsmax−0.65)/0.35

if AcceptRate > LamRate
T ← 0.999 · T

else
T ← T/0.999

end
end

Fig. 2. Pseudocode for Simulated Annealing using Boyan’s version of Swartz’s Modified Lam
annealing schedule.

D-equilibrium (i.e., the annealing schedule that optimally balances the computational
cost / solution quality trade-off). This “optimal” annealing schedule adjusts the tem-
perature based on the parameter λ which controls the cost-quality trade-off and more
importantly based on the current rate of accepted moves. Analyzing their annealing
schedule, Lam and Delosme determined that the temperature is reduced the quickest
when the probability of accepting a move is equal to 0.44. Since a faster cooling rate
leads to a shorter annealing run, Lam and Delosme proposed allowing the size of the
neighborhood considered for moves to dynamically fluctuate up or down to match this
target move acceptance rate of 0.44 as closely as possible [20]. The general idea is
that you can increase the acceptance rate by decreasing the maximum distance from
your current state that the algorithm considers for next states; and likewise decrease the
acceptance rate by increasing this distance. The motivation for this is the assumption



that nearby search states are of similar quality. If you make shorter distance moves,
the difference in fitness of your current and potential future states should be smaller on
average than if you allow larger moves. Lam and Delosme validated their model on the
Traveling Salesperson Problem as well as on a cell placement problem, but the anneal-
ing schedule itself is the result of a problem independent theoretical analysis of their
approximate thermal equilibrium model.

Swartz later extensively studied Lam and Delosme’s annealing schedule and pre-
sented a modification [21]. First, he performed additional empirical analysis of the Lam
schedule and determined that at the beginning of the search, the move acceptance rate
is near 1.0 (i.e., all moves at the beginning are accepted). The acceptance rate rapidly
decreases (at an exponential rate) during the first 15% of the run until it reaches the
target of 0.44. It remains nearly constant for the next 50% of the run, and then begins an
exponential decline to an acceptance rate of 0% by the end of the run. Swartz then noted
that adjusting the size of the move neighborhood is not the only way to track this the-
oretical target acceptance rate. Specifically, he presented an approach for tracking this
target acceptance rate by adapting the value of the temperature parameter up or down;
whereas Lam and Delosme used a monotonically decreasing temperature schedule and
adjusted the neighborhood function. Boyan presented a similar approach to adapting
the temperature parameter [19] to track the theoretical “optimal” acceptance rate with-
out modifying the neighborhood function during the search. Swartz’s (and Boyan’s)
Modified Lam annealing schedule has the advantage over the original Lam schedule
in that it is problem independent; whereas adapting the neighborhood function would
require a problem dependent analysis. In the experiments of this paper, we use Boyan’s
recommended implementation [19] of Swartz’s Modified Lam annealing schedule [21].
Pseudocode for SA using the Modified Lam annealing schedule is shown in Figure 2. It
requires no parameter tuning by the implementer. The algorithm uses problem-solving
feedback to adjust the temperature T appropriately.

3 Weighted Tardiness Scheduling with Sequence-Dependent
Setups

The weighted tardiness scheduling problem with sequence-dependent setups can be
defined as follows. The problem instance consists of a set of jobs J = {j0, j1, . . . , jN}.
Each of the jobs j has a weight wj , duedate dj , and process time pj . Furthermore, si,j is
defined as the amount of setup time required immediately prior to the start of processing
job j if it follows job i on the machine. It is not necessarily the case that si,j = sj,i. The
0-th “job” is the start of the problem (p0 = 0, d0 = 0, si,0 = 0, w0 = 0). Its purpose is
for the specification of the setup time of each of the jobs if sequenced first.

The weighted tardiness objective is to sequence the set of jobs J to minimize:

T =
∑

j∈J

wjTj =
∑

j∈J

wj max (cj − dj , 0), (2)

where Tj is the tardiness of job j; and cj , dj are the completion time and duedate of job
j. The completion time is equal to the sum of the process times and setup times of all



jobs that come before j in the sequence plus the setup time and process time of the job
j. Specifically, let π(j) be the position in the sequence of job j. Define cj as:

cj =
∑

i,k∈J,π(i)<=π(j),π(i)=π(k)+1

pi + sk,i. (3)

Single-machine scheduling to optimize the weighted tardiness objective function
is NP-Hard even if setups are independent of job ordering [22]. In the case that we
consider here, the challenge of the problem is greatly magnified by the sequence-
dependent setup constraints. Sen and Bagchi discuss the significance of the challenge
that sequence-dependent setups pose for exact solution procedures [23]. Specifically,
they discuss how sequence-dependent setups induce a non-order-preserving property of
the evaluation function. At the time of their writing, exact solution procedures such as
A*, Branch-and-Bound algorithms, and their own GREC [23] for sequencing problems
with sequence-dependent setups were limited to solving instances with no more than
approximately 25-30 jobs, even for easier objective functions. Problem instances of
larger size require turning to inexact solution procedures such as metaheuristic search.

4 Designing An Adaptive Simulated Annealing Algorithm

In this Section, we detail our design for a simulated annealer for the weighted tardiness
scheduling problem with sequence-dependent setups. We use the Modified Lam anneal-
ing schedule as discussed earlier to design a SA algorithm free of any parameters that
require tuning. There are simply two design decisions to make: (1) what neighborhood
function to use; and (2) how to generate the initial solution. We consider each of these
in turn below.

Choosing the Neighborhood Function: The weighted tardiness scheduling problem
with sequence-dependent setups is a one machine sequencing problem. Any ordering
of the jobs is a valid solution. The problem is to find a good ordering (i.e., one with a
low value of the weighted tardiness objective). Throughout our SA search, the current
search state is a complete ordering over the set of jobs. We consider three alternative
problem-independent neighborhood operators:

– Insert: The insert operator randomly selects a job from the current sequence, re-
moves that job, and reinserts it into a randomly selected new position.

– Swap: The swap operator randomly selects two jobs from the current sequence and
swaps their positions.

– Scramble: The scramble operator randomly selects two positions in the sequence
and randomly shuffles the jobs located between those two positions.

These three alternative operators are applicable to any ordering problem and are com-
mon choices of neighborhood operator. Later, we discuss empirical results using all
three. More sophisticated problem-dependent options are also possible here, but our
goal is to illustrate the power of a simple problem-independent adaptive SA.



Fig. 3. Comparison of neighborhood operators (scramble, swap, and insert). Shows average per-
cent deviation from best known solutions to the benchmark set for different length runs of the
adaptive SA using a heuristically determined initial solution. 99% confidence intervals are shown.

Random Start vs Heuristic Start: The next decision we must make is how to generate
the initial configuration of the search. If we wanted our SA approach to be completely
problem-independent (aside from the optimization objective), then the SA search could
simply begin with a random permutation of the jobs. We consider this option in our
experimental results and refer to it as Random.

We also, however, consider the use of a problem specific heuristic to seed the initial
state of the search. Specifically, we consider the use of the Apparent Tardiness Cost
with Setups (ATCS) heuristic [24]. ATCS was designed for use as a dispatch policy.
That is, its intended use is as a means of selecting the next job for the sequence in
a dynamic setting. It has also been used as a search heuristic for stochastic sampling
algorithms [25, 26]. ATCS is defined as follows:

ATCSj(t, l) =
wj

pj
exp (−max (dj − pj − t, 0)

k1p̄
− sl,j

k2s̄
), (4)

where t is the current time (or the sum of the process and setup times of the jobs already
sequenced); l is the index of the job most recently added to the schedule; p̄ is the average
processing time of all jobs; and s̄ is the average setup time.



Fig. 4. Comparison of neighborhood operators (scramble, swap, and insert). Shows average per-
cent deviation from best known solutions to the benchmark set for different length runs of the
adaptive SA using a random initial solution. 99% confidence intervals are shown.

The k1 and k2 are parameters that are automatically tuned based on characteristics
of the problem instance as follows.

k1 =

{

4.5 + R if R ≤ 0.5
6.0− 2R otherwise , (5)

where R is called the duedate range factor which is an indicator of how spread out
the duedates of the jobs are, and is defined as: R = dmax−dmin

Cmax

where dmax, dmin are
the maximum and minimum duedates, and Cmax is an estimate of the makespan (or
completion time of the last job).

k2 =
τ

2
√

η
. (6)

where τ is called the duedate tightness factor, defined by τ = 1 − d̄
Cmax

; and η is the
setup time severity factor, defined by η = s̄

p̄ . The τ is an indicator of how urgent the
duedates of the problem are and η is an indicator of how large an effect the setup times
can have on problem solving.

In our experiments, we consider the ATCS heuristic as an alternative to random
initial search states. In this option, ATCS generates a single solution which becomes
the seed for the run of SA. We refer to this option in the experiments as Heuristic.



Fig. 5. Comparison of neighborhood operators (swap and insert). Shows average percent devia-
tion from best known solutions to the benchmark set for different length runs of the adaptive sim-
ulated annealing algorithm using a random initial solution. 99% confidence intervals are shown.

5 Experimental Results

In this Section, we present experimental results. We begin with comparisons of the
three alternative neighborhood operators and the two alternatives for the initial search
state. We use an existing set of benchmark instances [26]. This set consists of 120
problem instances, each with 60 jobs, with varying levels of duedate tightness, duedate
range, and setup time severity. No currently available approach has been able to provide
provably optimal solutions to the problem instances in this benchmark set. There are,
however, a number of metaheuristics designed for the problem.

Figure 3 shows a comparison of the three neighborhood operators for the SA using
the ATCS heuristic to seed the initial state for the search. Five different length searches
are shown with a total number of evaluations of 1000, 104, 105, 106, and 107. The total
number of evaluations is on the X axis using log scale. The Y axis shows the average
percent deviation from the best known solutions to the benchmark instances. Specifi-
cally, for each length run and for each choice of operator, we report averages of 1200
runs (10 runs on each of the 120 benchmark instances). 99% confidence intervals are
shown. When using the heuristic to seed the starting configuration, the clearly dominant
choice of neighborhood operator is the Insert operator.

Figure 4 similarly shows a comparison of the three neighborhood operators, but this
time using random permutations to seed the SA search. Again, the results are averages



Fig. 6. Comparison of the adaptive simulated annealing algorithm using a heuristically deter-
mined initial solution and using a random initial solution. Both versions of the algorithm use the
insert neighborhood operator. Shows average percent deviation from best known solutions to the
benchmark set for different length runs. 99% confidence intervals are shown.

of 1200 runs and 99% confidence intervals are shown. In this case, due to the partic-
ularly slow convergence when using the Scramble operator, it is difficult to pick out
a clear winner. We can, however, see that Scramble is clearly dominated by either of
the other two neighborhood operators. Note, however, that for especially long searches
(e.g., 107 total number of evaluations), the performance of the SA using Scramble ap-
pears to be catching up to the other two.

To help distinguish the performance of the neighborhood operators when using ran-
dom starting configurations, Figure 5 illustrates the results of just the Swap and Insert
operators, for four different length runs (total number of evaluations of 104, 105, 106,
and 107). Just like in the case of heuristically determined initial states, we see that the
Insert neighborhood operator is the clearly dominating performer when using random
starting configurations.

In Figure 6, we consider the use of the ATCS heuristic to seed the search vs using
random initial configurations. Both options in this figure use the Insert neighborhood
operator. Again, the results are averages of 1200 runs and 99% confidence intervals
are shown. For really short searches (e.g., 104 total evaluations), using the heuristic
to seed the search has a clear advantage. For slightly longer searches (e.g., 105 total
evaluations), the heuristically seeded SA still has an advantage, though not as strong.
For longer searches of length 106 evaluations, there is negligible difference; and by 107



Table 1. Comparison of the two variations of the adaptive simulated annealer and the current best
available metaheuristic for the problem, a genetic algorithm for different length runs. %∆B is the
average percent deviation from the best known solutions with 99% confidence intervals shown.

Algorithm %∆B Time (seconds)
SA (Heuristic) (104 evals) 46.7%± 9.0% 0.039
SA (Random) (104 evals) 91.5%± 17.5% 0.026
SA (Heuristic) (105 evals) 30.8%± 4.9% 0.260
GA [27] (500 generations) 37.0%± 5.6% 0.255
SA (Random) (105 evals) 39.3%± 5.9% 0.254
GA [27] (5000 generations) 19.0%± 2.6% 2.389
SA (Heuristic) (106 evals) 20.4%± 3.4% 2.568
SA (Random) (106 evals) 21.5%± 3.3% 2.543
SA (Random) (107 evals) 8.84%± 1.5% 26.061
SA (Heuristic) (107 evals) 9.32%± 1.6% 26.220

evaluations all statistical difference vanishes. For long searches, there is no difference
between the performance of the completely problem independent SA and the SA that
uses a problem dependent heuristic to initialize the search.

Table 1 summarizes a comparison between the two variations of our adaptive sim-
ulated annealer and an existing genetic algorithm (GA) for the problem. The specific
GA that we compare to is the current best performing metaheuristic for the problem,
which uses a permutation crossover operator known as Non-Wrapping Order Crossover
(NWOX) and an Insertion mutation operator [27]. The insertion mutation operator is
the same as our Insert neighborhood operator. The parameters of the GA of [27] were
tuned through an extensive automated tuning process on a set of randomly generated
instances distinct from the benchmark set. This GA represents the state-of-the-art in
solution procedure for this problem.

The experiments conducted were performed on a Dell Dimension 8400 with a 3.0
GHz Pentium 4 CPU and 1GB memory. Both our SA algorithm and the GA of [27] are
implemented in Java 1.5. Similar length runs in average CPU time are considered in the
comparisons. Approximately 500 generations of the GA take approximately the same
length of time to execute compared to a run of SA with 105 total evaluations.

For the shortest length run (the first two rows of Table 1), the SA with heuristic
initial solution finds solutions significantly better than when random initial solutions
are used (t = 11.1 for a T-test with 1199 dof, p < 2 ∗ 10−27).

For the next length run (approximately 0.25 seconds of CPU time), the SA with
heuristic initial solution again significantly outperforms the SA when random starting
configurations are used (t = 7.3 for a T-test with p < 3 ∗ 10−13). It also significantly
outperforms the GA (t = 6.5 for a T-test with 1199 dof, p < 5 ∗ 10−11).

For the slightly longer length run (approximately 2.5 seconds), the GA is the better
performer compared to the better of the two variations of our adaptive SA at a signif-
icance level p < 0.02 (T-test with 1199 dof, t = 2.1). Only marginal significance is
seen between the two variations of the SA for this length run (t = 1.4 for a T-test with
1199 dof, p < 0.09). But the adaptive SA is still competitive with this GA, which is
impressive given that this GA is the currently dominant performer for the problem.



Data for the GA was not available for a comparable length run of the longest run
of the SA that we consider (approximately 26 seconds per run). But by this length run,
little significance remains between initializing the SA with a heuristic as compared to
random initialization (t = 1.0 for a T-test with 1199 dof, p < 0.16).

6 Conclusions

In this paper, we illustrated the ease with which a parameter-free simulated annealing
search could be designed using an existing adaptive annealing schedule. Specifically,
we used the Modified Lam annealing schedule which has no parameters to tune, and
which instead adapts the temperature parameter during the search to track the theoret-
ical “optimal” rate of accepted moves during the course of the search. No parameter
tuning during the algorithm design and implementation phases was necessary. The only
design decisions that need be made are how to initialize the starting solution and what
neighborhood operator to use.

We specifically used a computationally hard scheduling problem known as weighted
tardiness scheduling with sequence-dependent setups for our empirical analysis. For
short searches, the adaptive SA outperforms the current best metaheuristic for this NP-
Hard scheduling problem; while for slightly longer searches, the highly-tuned GA is
still better although our SA is competitive. During the course of this research, the two
variations of the SA were able to improve upon the best known solutions to several of
the benchmark instances. The objective values of these new best known solutions can
be found in Appendix A. The simplicity of a problem-independent self-adaptive SA is
a worthy competitor to even a highly optimized and customized procedure.

Additionally, our experimental results show that for short searches, there is a benefit
to using a problem dependent heuristic to initialize the starting configuration of the
SA search. This benefit disappears for longer searches where little, if any, difference
is seen in the results, illustrating that a completely problem independent adaptive SA
(aside from the optimization objective function) can be effective even for especially
hard scheduling problems.

Acknowledgements

This research was supported by the Richard Stockton College’s Research and Profes-
sional Development Program.

A Appendix: New Best Known Solutions to Benchmarks

During the course of the experimental part of our research, several new best known
solutions to the benchmark instances were found. The objective values of those new
best known solutions are listed here. The first column is the instance number. This is
followed by the value of the new best known solution and the variation of SA that
found it. SA-H is for the SA initialized by the heuristic. SA-R is for the SA initialized
randomly. Both versions used the Insert neighborhood operator.



Instance Old Best New Best Found By
1 866 790 SA-H
2 5907 5824 SA-H
4 7251 6840 SA-H
5 5233 5017 SA-R
6 8131 7824 SA-H
7 4130 3933 SA-H
8 299 298 SA-R
9 7421 7059 SA-H
10 2451 2125 SA-H
11 5263 5088 SA-H
14 3941 3761 SA-R
15 2915 2039 SA-R
16 6711 5559 SA-R
17 461 387 SA-R
18 2514 1918 SA-R
19 279 239 SA-H
20 4193 3805 SA-R
24 1103 1092 SA-H
27 74 57 SA-R
30 333 215 SA-R
37 1757 1008 SA-R
41 73176 71242 SA-H
42 61855 59493 SA-H
43 149990 147737 SA-H
44 37584 36265 SA-H
45 61573 59696 SA-R
46 37112 36175 SA-R
47 76629 74389 SA-H
48 67633 65129 SA-R
49 81220 79656 SA-R
50 33877 32777 SA-R
51 58574 54707 SA-H
52 105367 100793 SA-H
53 95452 94394 SA-R
55 74342 72420 SA-R
56 84614 80258 SA-H
57 70414 68535 SA-H
58 53460 46978 SA-R
59 59060 56181 SA-H
60 73328 68395 SA-R
61 78667 76769 SA-R
62 45522 44781 SA-H
63 78822 76059 SA-H
64 94165 93079 SA-H
65 132306 127713 SA-R
66 62266 59717 SA-H

Instance Old Best New Best Found By
67 29443 29394 SA-R
68 23614 22653 SA-R
69 72238 71534 SA-H
70 78137 76140 SA-R
71 161233 155036 SA-R
72 51634 49886 SA-H
73 34859 30259 SA-H
74 38292 32083 SA-R
75 24429 21602 SA-R
76 66656 57593 SA-H
77 40558 35380 SA-H
78 24030 21443 SA-H
79 125824 121434 SA-H
80 25212 20221 SA-H
81 386782 385918 SA-H
82 412721 410550 SA-H
83 466070 459939 SA-R
84 331659 330186 SA-R
85 558556 557831 SA-R
86 365783 364474 SA-R
87 401049 400264 SA-R
88 436855 434176 SA-R
89 415433 411810 SA-H
90 406939 403623 SA-R
91 347175 344428 SA-R
92 365779 363388 SA-R
94 336299 334180 SA-H
95 527909 524463 SA-R
97 420287 418995 SA-H
99 374781 374607 SA-R
101 354906 353575 SA-R
102 496131 495094 SA-H
104 361718 358738 SA-R
105 456364 450806 SA-R
106 459925 457284 SA-H
107 355537 353564 SA-H
108 467651 462675 SA-R
109 415817 413918 SA-H
110 421282 419014 SA-R
111 350723 348796 SA-H
112 377418 375952 SA-H
113 263200 261795 SA-H
114 473197 471422 SA-H
116 540231 537593 SA-H
117 518579 507188 SA-H
119 583947 581119 SA-H



References

1. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science
220 (May 1983) 671–680

2. van Laarhoven, P.J.M., Aarts, E.H.L.: Simulated Annealing: Theory and Applications. D.
Reidel Publishing Company (Kluwer Academic Publishers) (1987)

3. Glover, F.: Tabu search – part I. ORSA Journal on Computing 1(3) (Summer 1989) 190–206
4. Glover, F.: Tabu search – part II. ORSA Journal on Computing 2(1) (Winter 1990) 4–32
5. Holland, J.H.: Adaptation in Natural and Artificial Systems: An Introductory Analysis with

Applications to Biology, Control, and Artificial Intelligence. University of Michigan Press
(1975) Second Edition: MIT Press, 1992.

6. Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addi-
son Wesley (1989)

7. De Jong, K.A.: An Analysis of the Behavior of a Class of Genetic Adaptive Systems. PhD
thesis, University of Michigan, Ann Arbor, MI (1975)

8. Grefenstette, J.: Optimization of control parameters for genetic algorithms. IEEE Transac-
tions on Systems, Man, and Cybernetics 16(1) (Jan-Feb 1986) 122–128

9. Cicirello, V.A., Smith, S.F.: Modeling GA performance for control parameter optimiza-
tion. In Whitley, D., Goldberg, D., Cantú-Paz, E., Spector, L., Parmee, I., Beyer, H., eds.:
GECCO-2000: Proceedings of the Genetic and Evolutionary Computation Conference, Mor-
gan Kaufmann Publishers (8-12 July 2000) 235–242

10. Cao, Y.J., Wu, Q.H.: Optimization of control parameters in genetic algorithms: A stochastic
approach. International Journal of Systems Science 30(5) (May 1999) 551–559

11. Wu, S.J., Chow, P.T.: Genetic algorithms for nonlinear mixed discrete-integer optimization
problems via meta-genetic parameter optimization. Engineering Optimization 24(2) (1995)
137–159

12. Bramlette, M.F.: Initialization, mutation and selection methods in genetic algorithms for
function optimization. In Belew, R.K., Booker, L.B., eds.: Proceedings of the Fourth In-
ternational Conference on Genetic Algorithms, San Mateo, CA, Morgan Kaufmann (1991)
100–107

13. Koch, T.E., Scheer, V., Wakunda, J., Zell, A.: A parallel, hybrid meta-optimization for finding
better parameters of an evolution strategy in real world optimization problems. In Wu, A.S.,
ed.: Proceedings of the 2000 Genetic and Evolutionary Computation Conference Workshop
Program. (July 2000) 17–19 Evolutionary Computation and Parallel Processing Workshop.

14. Campos, M., Bonabeau, E., Théraulaz, G., Deneubourg, J.: Dynamic scheduling and division
of labor in social insects. Adaptive Behavior 8(2) (2000) 83–96

15. Morley, D.: Painting trucks at general motors: The effectiveness of a complexity-based
approach. In: Embracing Complexity: Exploring the Application of Complex Adaptive Sys-
tems to Business, The Ernst and Young Center for Business Innovation (1996) 53–58

16. De Jong, K.: Adaptive system design: A genetic approach. IEEE Transactions on Systems,
Man, and Cybernetics 10(9) (1980) 566–574

17. Eiben, A.E., Hinterding, R., Michalewicz, Z.: Parameter control in evolutionary algorithms.
IEEE Transactions on Evolutionary Computation 3(2) (July 1999) 124–141

18. Cicirello, V.A.: Boosting Stochastic Problem Solvers Through Online Self-Analysis of Per-
formance. PhD thesis, The Robotics Institute, School of Computer Science, Carnegie Mellon
University, Pittsburgh, PA (21 July 2003) Also available as technical report CMU-RI-TR-03-
27.

19. Boyan, J.A.: Learning Evaluation Functions for Global Optimization. PhD thesis, School of
Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania (1998)



20. Lam, J., Delosme, J.: Performance of a new annealing schedule. In: Proceedings of the 25th
ACM/IEEE Design Automation Conference. (1988) 306–311

21. Swartz, W.P.: Automatic Layout of Analog and Digital Mixed Macro/Standard Cell Inte-
grated Circuits. PhD thesis, Yale University (May 1993)

22. Morton, T.E., Pentico, D.W.: Heuristic Scheduling Systems: With Applications to Production
Systems and Project Management. John Wiley and Sons (1993)

23. Sen, A.K., Bagchi, A.: Graph search methods for non-order-preserving evaluation functions:
Applications to job sequencing problems. Artificial Intelligence 86(1) (September 1996)
43–73

24. Lee, Y.H., Bhaskaran, K., Pinedo, M.: A heuristic to minimize the total weighted tardiness
with sequence-dependent setups. IIE Transactions 29 (1997) 45–52

25. Cicirello, V.A., Smith, S.F.: Amplification of search performance through randomization of
heuristics. In Van Hentenryck, P., ed.: Principles and Practice of Constraint Programming –
CP 2002: 8th International Conference, Proceedings. Volume LNCS 2470 of Lecture Notes
in Computer Science., Springer-Verlag (7-13 September 2002) 124–138

26. Cicirello, V.A., Smith, S.F.: Enhancing stochastic search performance by value-biased ran-
domization of heuristics. Journal of Heuristics 11(1) (January 2005) 5–34

27. Cicirello, V.A.: Non-wrapping order crossover: An order preserving crossover operator that
respects absolute position. In M. Keijzer et al, ed.: Proceedings of the Genetic and Evo-
lutionary Computation Conference (GECCO’06). Volume 2., ACM Press (8-12 July 2006)
1125–1131


