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Algorithm Portfolio: Motivation

• Combinatorial problems such as SAT, CSPs, and MIP have 
several competing solvers with complementary strengths
- Different solvers excel on different kinds of instances

• Ideal strategy:  given an instance, dynamically decide which 
solver(s) to use from a portfolio of solvers
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Algorithm Portfolio: Motivation
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* VBS:  Virtual Best Solver



Algorithm Portfolios: How?

• Given a portfolios of algorithms A1, A2, …, A5, when an 
instance j comes along, how should we decide which solver(s) 
to use without actually running the solvers on j?
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Algorithm Portfolios: Use Machine Learning

• Pre-compute how long each Ai takes on each training instance
• “Use this information” when selecting solver(s) for instance j
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Flavor 1:  Algorithm Selection

• Output:  one single solver that is expected to perform the 
best on instance j in the given time limit T
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Flavor 2: Algorithm Scheduling

• Output:  a sequence of (solver,runtime) pairs that is 
expected to perform the best on instance j in total time T
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3S: Semi-Static Scheduling

• Question:  given a set of training instances, what is the best 
solver schedule for these?

• Set covering problem; can be modeled as an IP
- binary variables xS,t : 1 iff solver S is scheduled for time t
- penalty variables yi  : 1 iff no selected solver solves instance i

Minimize number of unsolved instances 
Minimize runtime (secondary obj.) 
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Column Generation for Scalability

• Issue:  poor scaling, due to too many variables
- e.g., 30 solvers, C = 3000 sec timeout      30000 xS,t vars
- even being smart about “interesting” values of t doesn’t help

• Solution:  use column generation to identify promising (S,t) 
pairs that are likely to appear in the optimal schedule
- solve LP relaxation to optimality using column generation
- use only the generated columns to construct a smaller IP,

and solve it to optimality  (no branch-and-price)

• Results in fast but still high quality solutions (empirically)



Building Parallel Portfolios

• Setting: 
- p processors
- wall clock cutoff C
- set of sequential and parallel solvers
- training data (instances with solver performance) 

• Parallel Portfolio Design Problem
- Given a SAT instance F, which solvers to schedule, for how long, and on 

how many processors?
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Approach: Extending 3S

• Schedules computed using IP formulation
- Number of integer vars reduced using Column Generation for root LP

• kNN based on the 48 normalized features in Euclidean Space

Static Schedule for 10% of 
C, computed offline, oblivious 

to F, using all training data

Dynamic Schedule for 90% of C, 
computed online using k nearest 
neighbors of F in the training data



Parallel Semi-Static Scheduling

Parallel Solver Scheduling IP - CPU time
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Variables yi are exactly what they were before. There are now variables
xS,t,P for all solvers S, time limits t, and subsets of processors P ✓ {1, . . . , p}
with |P | = nS . xS,t,P is 1 if an only if solver S is run for time t on the processors
in P in the schedule.

The first constraint is again to solve all instances with the schedule or count
them as not covered. There is now a time limit constraint for each processor.
The third set of constraints ensures that all solvers that have a minimal solver
time are included in the schedule, with an appropriate time limit. The last
constraint finally places a limit on the number of solvers that can be included in
the schedule.

The objective is again to minimize the number of uncovered instances. The
secondary criterion is to minimize the total CPU time of the schedule.

Remark 1. Note that the IP above needs to be solved both o✏ine to determine
the static solver schedule (for this problem M = ; and the solver limit is infinite)
and during the execution phase (when M and the solver limit are determined by
the static schedule computed o✏ine). Therefore, we absolutely need to be able
to solve this problem quickly, despite its huge size and its inherent symmetry
caused by the multiple processors.

Note also that the parallel solver scheduling IP does not directly result in
an executable solver schedule. Namely, the IP does not specify the actual start
times of solvers. In the sequential case this does not matter as solvers can be
sequenced in any way without a↵ecting the total schedule time or the number of
instances solved. In the parallel case, however, we need to ensure that the parallel
processes are in fact run in parallel. We omit this aspect from the IP above to
avoid further complicating the optimization. Instead, after solving the parallel
solver IP, we heuristically schedule the solvers in a best e↵ort approach, whereby
we may preempt solvers and eventually even lower the runtime of the solvers to
obtain a legal schedule. In our experiments presented later it turned out that in
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Challenges

• Scheduling IP formulation is more complex, esp. with 
parallel solvers

• Unlike typical sequential scheduling, computing a single long 
running solver is insufficient => must solve Scheduling IP 
online at runtime!
- Column Generation based variable reduction heuristic is critical

• Processor symmetry artificially increases search space
- E.g., on 8 processors, 8! = 40,000 equivalent versions of every schedule 

=> 0.5 sec optimization could take over 5 hours!
- Column Generation naturally alleviates this problem to a large extent

• Scheduling IP may not necessarily directly generate 
executable schedule
- Best-effort post-processing to synchronize parallel solvers on multiple 

cores



Experimental Results

• Our parallel portfolios
- p3S-37: 37 sequential constituent solvers
- p3S-39: 37 sequential and 2 parallel solvers 
• cryptominisat 2.9.0 and plingeling 276

• Comparison against 2011 winners
- parallel portfolio: ppfolio
- parallel solver: plingeling

• Instances: 
- Training: 5,466 from SAT Competitions and Races 2002-2010
- Testing: 1,200 from SAT 2011 Competition



Experimental Results: All Categories
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Experimental Results: Application Track
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Summary

• Introduced a novel method for devising dynamic parallel 
solver portfolios that accommodate parallel solvers

• Produce parallel solver schedules at runtime

• p3S is a highly competitive solver

• Combining Machine Learning and OR technologies to create 
a better solver


