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Algorithm Portfolio: Motivation
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e Combinatorial problems such as SAT, CSPs, and MIP have

- Different solvers excel on different kinds of instances

e |deal strategy: given an instance, dynamically decide which
solver(s) to use from a portfolio of solvers
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* VBS: Virtual Best Solver




Algorithm Portfolios: How?

e Given a portfolios of algorithms A1, A2, ..., A5, when an
instance j comes along, how should we decide which solver(s)
to use without actually running the solvers on j?




Algorithm Portfolios: Use Machine Learning
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® Pre-compute how long each Ai takes on each training instance
e “Use this information”™ when selecting solver(s) for instance j




Flavor |: Algorithm Selection

e Qutput: one single solver that is expected to perform the
best on instance j in the given time limit T




Flavor 2:Algorithm Scheduling
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e Qutput: a sequence of (solver,runtime) pairs that is
expected to perform the best on instance j in total time T




3S: Semi-Static Scheduling
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® Question: given a set of training instances, what is the best
solver schedule for these?

® Set covering problem; can be modeled as an IP
- Dbinary variables xst : 1 iff solver S is scheduled for time t

- penalty variables yi : 1 iff no selected solver solves instance i

ﬁ— Minimize number of unsolved instances
__— Minimize runtime (secondary obj.)
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Column Generation for Scalability

. poor scaling, due to too many variables
e.g., 30 solvers, C = 3000 sec timeout 30000 xst vars
- even being smart about “interesting” values of t doesn’t help

. use column generation to identify promising (S,t)
pairs that are likely to appear in the optimal schedule
- solve LP relaxation to optimality using column generation

- use only the generated columns to construct a smaller IP,
and solve it to optimality

e Results in fast but still high quality solutions (empirically)




Building Parallel Portfolios

Time cutoff C

{ 2.

4 processors

P:

o Setting:

P processors

wall clock cutoff C

set of sequential and parallel solvers
training data (instances with solver performance)

e Parallel Portfolio Design Problem

- Given a SAT instance F, which solvers to schedule, for how long, and on
how many processors?




Approach: Extending 3S

Static Schedule for 10% of Dynamic Schedule for 90% of C,
C, computed offline, oblivious computed online using k nearest
to F using all training data neighbors of F in the training data

e Schedules computed using IP formulation
- Number of integer vars reduced using Column Generation for root LP

® kNN based on the 48 normalized features in Euclidean Space




Parallel Semi-Static Scheduling

Minimize number of unsolved instances

Minimize runtime (secondary objective)

Solve all Instances
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| iff solver S is scheduled for time t on processor P

penalty variable is | iff no selected solver solves instance i




Challenges

Scheduling IP formulation is more complex, esp. with
parallel solvers

Unlike typical sequential scheduling, computing a single long
running solver is insufficient => must solve Scheduling IP
online at runtime!
- Column Generation based variable reduction heuristic is critical

Processor symmetry artificially increases search space

- E.g., on 8 processors, 8! = 40,000 equivalent versions of every schedule
=> (0.5 sec optimization could take over 5 hours!

- Column Generation naturally alleviates this problem to a large extent

Scheduling IP may not necessarily directly generate
executable schedule

- Best-effort post-processing to synchronize parallel solvers on multiple
cores




Experimental Results

® Qur parallel portfolios

- p3S-37: 37 sequential constituent solvers
- p3S-39: 37 sequential and 2 parallel solvers
e cryptominisat 2.9.0 and plingeling 276

e Comparison against 2011 winners

- parallel portfolio: ppfolio
- parallel solver: plingeling

® |nstances:

- Training: 5,466 from SAT Competitions and Races 2002-2010
- Testing: 1,200 from SAT 2011 Competition




Experimental Results: All Categories

Parallel portfolios on 8 cores: 2011 Comp., all categories
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Experimental Results: Application Track

2011 Application track Parallel portfolios on 8 cores: 2011 Application track
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Summary

Introduced a novel method for devising dynamic parallel
solver portfolios that accommodate parallel solvers

Produce parallel solver schedules at runtime
p3S is a highly competitive solver

Combining Machine Learning and OR technologies to create
a better solver




