Parallel SAT Solver Selection and Scheduling

Yuri Malitsky 4C*

Ashish Sabharwal IBM Watson
Horst Samulowitz IBM Watson
Meinolf Sellmann IBM Watson

Lok
eonstraint

' \ C omputation
*This research has been partially supported by EU FET grant ICON (project number 284715) @entre

Algorithm Portfolio: Motivation

Cryptosat galksat

Minisat ‘
' ‘ SAPS

Precosat

O MarchEq l Clasp
\

e Combinatorial problems such as SAT, CSPs, and MIP have

- Different solvers excel on different kinds of instances

e |deal strategy: given an instance, dynamically decide which
solver(s) to use from a portfolio of solvers

space of 5437

AlgOI"Ithm POI‘th'IOZ MOtlvatiOn /SATinstances

algorithm is good

on the instance
(< 25% slower
than VBS)

algorithm is ok

on the instance
(> 25% slower
than VBS)

algorithm is bad

on the instance
(times out after
5000 sec)

* VBS: Virtual Best Solver

Algorithm Portfolios: How?

e Given a portfolios of algorithms A1, A2, ..., A5, when an
instance j comes along, how should we decide which solver(s)
to use without actually running the solvers on j?

Algorithm Portfolios: Use Machine Learning

)

® Pre-compute how long each Ai takes on each training instance
e “Use this information”™ when selecting solver(s) for instance j

Flavor |: Algorithm Selection

e Qutput: one single solver that is expected to perform the
best on instance j in the given time limit T

Flavor 2:Algorithm Scheduling

300 sec
[l

20 sec

e Qutput: a sequence of (solver,runtime) pairs that is
expected to perform the best on instance j in total time T

3S: Semi-Static Scheduling
—— ——’
|0% Timeout 90% Timeout

® Question: given a set of training instances, what is the best
solver schedule for these?

® Set covering problem; can be modeled as an IP
- Dbinary variables xst : 1 iff solver S is scheduled for time t

- penalty variables yi : 1 iff no selected solver solves instance i

ﬁ— Minimize number of unsolved instances
__— Minimize runtime (secondary obj.)
(C+1) Z Yi + Z trs,t (1)
i S,t

ZEs,t 2 1) (2)

(3)

Column Generation for Scalability

. poor scaling, due to too many variables
e.g., 30 solvers, C = 3000 sec timeout 30000 xst vars
- even being smart about “interesting” values of t doesn’t help

. use column generation to identify promising (S,t)
pairs that are likely to appear in the optimal schedule
- solve LP relaxation to optimality using column generation

- use only the generated columns to construct a smaller IP,
and solve it to optimality

e Results in fast but still high quality solutions (empirically)

Building Parallel Portfolios

Time cutoff C

{ 2.

4 processors

P:

o Setting:

P processors

wall clock cutoff C

set of sequential and parallel solvers
training data (instances with solver performance)

e Parallel Portfolio Design Problem

- Given a SAT instance F, which solvers to schedule, for how long, and on
how many processors?

Approach: Extending 3S

Static Schedule for 10% of Dynamic Schedule for 90% of C,
C, computed offline, oblivious computed online using k nearest
to F using all training data neighbors of F in the training data

e Schedules computed using IP formulation
- Number of integer vars reduced using Column Generation for root LP

® kNN based on the 48 normalized features in Euclidean Space

Parallel Semi-Static Scheduling

Minimize number of unsolved instances

Minimize runtime (secondary objective)

Solve all Instances

Do not exceed time
min (pC + 1 -+ tnex .
(p >Z;w S;D Sl B limit on each processor
s.t. y; + Z rstp = 1 V1
(S,t) | i€Vs,.,PC{1,...,p},|P|=ns ensures that all solvers that

Z trsep < C Vge{l,...,p} have a minimal solver time

S,t,PC{1,....p} ye P ,|P|=ns / are included in the schedule,

> rsep =1 VSeM with an appropriate time limit
S,t,PC{1,....p},|P|=ng,t>ts
D Tsip SN Limit number of

S,t,PC{1,....p},|P|l=n .
theophIPl=ns solvers in the schedule
vi, st p € {0,1} Vi, S,t,P C{1,...,p},|P| =ns

| iff solver S is scheduled for time t on processor P

penalty variable is | iff no selected solver solves instance i

Challenges

Scheduling IP formulation is more complex, esp. with
parallel solvers

Unlike typical sequential scheduling, computing a single long
running solver is insufficient => must solve Scheduling IP
online at runtime!
- Column Generation based variable reduction heuristic is critical

Processor symmetry artificially increases search space

- E.g., on 8 processors, 8! = 40,000 equivalent versions of every schedule
=> (0.5 sec optimization could take over 5 hours!

- Column Generation naturally alleviates this problem to a large extent

Scheduling IP may not necessarily directly generate
executable schedule

- Best-effort post-processing to synchronize parallel solvers on multiple
cores

Experimental Results

® Qur parallel portfolios

- p3S-37: 37 sequential constituent solvers
- p3S-39: 37 sequential and 2 parallel solvers
e cryptominisat 2.9.0 and plingeling 276

e Comparison against 2011 winners

- parallel portfolio: ppfolio
- parallel solver: plingeling

® |nstances:

- Training: 5,466 from SAT Competitions and Races 2002-2010
- Testing: 1,200 from SAT 2011 Competition

Experimental Results: All Categories

Parallel portfolios on 8 cores: 2011 Comp., all categories
5000

p3S-37 <
4000 p3S-39 —=—

2011 Comp., all categories

3000

2000

[}
@
O
9]
o)
o
s
@
L
o
2
)]
o)
Q

1000

256 1024 4096 0 .
ppfolio (sec, logscale) 500 550 600 650 700 750 800 850 900
Instances solved

Experimental Results: Application Track

2011 Application track Parallel portfolios on 8 cores: 2011 Application track

o - 'p3S-37

o 2P] ppfolio
- . plingeling
s pP3S-39

]
[%j O U

]
]

I I I I

O

U g
O O

)
o]
O
n
(@)
O
o
o
)
(@)
O’ID
)
(4p]
o

16 64 256 10244096
plingeling (sec, logscale)

| | | | | =

120 160 180 200 220 240
Instances solved

Summary

Introduced a novel method for devising dynamic parallel
solver portfolios that accommodate parallel solvers

Produce parallel solver schedules at runtime
p3S is a highly competitive solver

Combining Machine Learning and OR technologies to create
a better solver

