Containment, Equivalence and Coreness from CSP to QCSP and beyond

Barnaby Martin and Florent Madelaine

LIX, École Polytechnique, France.

CP 2012, Québec. 9 Octobre 2012.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Model-checking

We are interested in the parameterisation of the model checking problem by the model. Fix a logic \mathscr{L} and fix \mathcal{D} .

- The problem " $\mathscr{L}(\mathcal{D})$ " has
 - Input: a sentence φ of \mathscr{L} .
 - Question: does $\mathcal{D} \models \varphi$?

We consider syntactic fragments \mathscr{L} of FO.

- For L = {∃, ∧, =} this is the Constraint Satisfaction Problem (CSP).
- ▶ For $\mathscr{L} = \{\forall, \exists, \land, =\}$ this is the Quantified CSP (QCSP).
- For L = {∀, ∃, ∧, ∨} this is some other strange problem I studied.

What is Core-ness?

- (?) Call a structure D an L-core if it is minimal w.r.t. size among structures that agree on L.
- (?) Call a structure D an L-core if for no proper substructure D' do D' and D agree on L.
- For CSP, the $\{\exists, \land, =\}$ -core is the *core*!
 - Both definitions above coincide.
- The core of \mathcal{D} is a minimal induced substructure $\mathcal{X} \subseteq \mathcal{D}$ all of whose endomorphisms are automorphisms.

It is well-known that \mathcal{X} is unique up to iso and $\mathrm{CSP}(\mathcal{D}) = \mathrm{CSP}(\mathcal{X}).$

The $\{\forall, \exists, \land, \lor\}$ -core, the so-called *U*-*X*-core, is again well-behaved.

The two definitions coincide. It is known to be unique up to iso and be a minimal induced substructure.

- The $\{\forall, \exists, \neg, \land, \lor, =\}$ -core is clearly well-behaved.
 - Every structure is a $\{\forall, \exists, \neg, \land, \lor, =\}$ -core!

In fact, the $\{\forall, \exists, \land, \lor, =\}$ -core is equally well-behaved.

• Every structure is a $\{\forall, \exists, \land, \lor, =\}$ -core!

The point of cores

In CSPs, restriction to cores enables one to assume

- constants naming the elements
- ► that the corresponding algebras are idempotent What are the properties of {∀, ∃, ∧}-cores?
 - ► For one thing, the two definitions do not coincide.

Both \mathcal{A} and \mathcal{B} are \mathscr{L} -cores! But only \mathcal{B} is a \mathscr{L} -core.

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注目 のへ(?)

We will revert to the second definition.

 Call a structure D a Q-core if for no proper substructure D' do D' and D agree on {∀,∃, ∧,=}.

This also gives the natural notion for *Q*-core of.

Questions:

- Is this notion useful?
- Is the Q-core of a structure unique up to iso?

Answers

Q-cores are useful for simplifying classifications!

If H is a partially reflexive forest, then either the Q-core of H has a majority polymorphism and QCSP(H) is in P, or QCSP(H) is NP-hard.

Uniqueness remains unknown. We conjecture the Q-core is unique up to iso.

Can we reduce to the idempotent ???

Table : different notions of "core" (the circles represent self-loops).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ