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Summary

SCHOOL OF BUSINESS

What can MDDs do for discrete optimization?
e Compact representation of all solutions to a problem
e Limit on size gives approximation

e Control strength of approximation by size limit

MDDs for Constraint Programming

e MDD propagation natural generalization of domain propagation
e Orders of magnitude improvement possible

MDDs for optimization (CP/ILP/MINLP)
e MDDs provide discrete relaxations
e Much stronger bounds can be obtained in much less time

Many opportunities: search, stochastic programming, integrated
methods, theory, ...
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Decision Diagrams cpper
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e Binary Decision Diagrams were introduced to compactly
represent Boolean functions  [Lee, 1959], [Akers, 1978], [Bryant, 1986]

e BDD: merge isomorphic subtrees of a given binary decision tree

e MDDs are multi-valued decision diagrams (i.e., for discrete
variables)
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Brief background epper
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e Original application areas: circuit design, verification
e Usually reduced ordered BDDs/MDDs are applied

— fixed variable ordering

— minimal exact representation

e Recent interest from optimization community
— cut generation [Becker et al., 2005]
— 0/1 vertex and facet enumeration [Behle & Eisenbrand, 2007]
— post-optimality analysis [Hadzic & Hooker, 2006, 2007]
— set bounds propagation [Hawkins, Lagoon, Stuckey, 2005]

e |nteresting variant

— approximate MDDs
[H.R. Andersen, T. Hadzic, J.N. Hooker, & P. Tiedemann, CP 2007] 4
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Exact MDDs for discrete optimization epper
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Exact MDDs for discrete optimization epper
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Approximate MDDs
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e Exact MDDs can be of exponential size in
general

e Can we limit the size of the MDD and still have
a meaningful representation?

— Yes, first proposed by Andersen et al. [2007] :

Limit the width of the MDD (the maximum number
of nodes on any layer)

e Approximate MDDs: main focus of this talk

10
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MDDs for Constraint Programming
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Motivation EPpEr
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Constraint Programming applies
e systematic search and
e inference techniques

to solve combinatorial problems

Inference mainly takes place through:
e Filtering provably inconsistent values from variable domains
e Propagating the updated domains to other constraints

X, € {1,2}, x,€ {1,2,3}, x; € {2,3}

X, < X, \\Xz e {2,3}

alldifferent(x,,x,,X;) \Xl e {1}

14
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AllEqual(x,, X,,..., X,), all x; binary

X;+ X, + ... +X 2n/2

® ®
®
0,1} X, {0}‘ (1}
® ® ®
® ® ®
{0,1} Xn-1 {0} {1}
® M :
0,1}

O

domain representation, size 2" MDD representation, size 2 o



Drawback of domain propagation
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e All structural relationships among variables are
projected onto the domains

e Potential solution space implicitly defined by Cartesian
product of variable domains (very coarse relaxation)

We can communicate more information between
constraint using MDDS [Andersen et al. 2007]

e Explicit representation of more refined potential
solution space

e Limited width defines relaxation MDD
e Strength is controlled by the imposed width

16
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MDD-based Constraint Programming  lepper

e Maintain limited-width MDD

— Serves as relaxation
— Typically start with width 1 (initial variable domains)
— Dynamically adjust MDD, based on constraints

e Constraint Propagation

— Edge filtering: Remove provably inconsistent edges (those
that do not participate in any solution)

— Node refinement: Split nodes to separate edge information

e Search
— As in classical CP, but may now be guided by MDD

17



Characterization of Propagation
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Domain consistency generalizes naturally to MDDs:

e Let C(X) be a constraint on variables X and let M be an
MDD on X

e Constraint Cis MDD consistent if for each arcin M,
there is at least one path in M that represents a
solution to C

Equivalent to domain consistency for MDD of width 1

18



Specific MDD propagation algorithms leppeér
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e Linear equalities and inequalities  [Hadzic et al., 2008]
[Hoda et al., 2010]

e Alldifferent constraints [Andersen et al., 2007]
e Flement constraints [Hoda et al., 2010]
e Among constraints [Hoda et al., 2010]

e Disjunctive scheduling constraints [Hoda et al., 2010]
[Cire & v.H., 2011]

e Sequence constraints (combination of Amongs)
[v.H., 2011]

e Generic re-application of existing domain filtering
algorithm for any constraint type  [Hodaetal, 2010]

19



e For a given constraint type we maintain specific ‘state
information’ at each node in the MDD

e Computed from incoming arcs (both from top and
from bottom)

e State information is basis for MDD filtering and for
MDD refinement

20



First example: Among constraints
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= Given a set of variables X, and a set of values §, a
lower bound [ and upper bound u,

Among(X, S, [ u):= (<5 _,(xe S)<u

xe X

“among the variables in X, at least [ and at most u
take a value from the set §”

= Applications in, e.g., sequencing and scheduling
= WLOG assume here that X are binary and S = {1}

21



Example MDD for Among

State information:

O
X4 {0} {1} path length from top
and from bottom
O O
% V y y \1}
®) O O
X3
{1} 10} {1} {0}
O O
% N A
O

Exact MDD for Among({xy,X,,X3,X,},{1},2,2)

22
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MDD Filtering for Among epper
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Goal: Given an MDD and an Among constraint, remove all
inconsistent edges from the MDD

(establish MDD-consistency) [Hoda et al., CP 2010]

Approach:

e Compute path lengths from the root and from the sink to each
node in the MDD

e Remove edges that are not on a path with
length between lower and upper bound

e Complete (MDD-consistent) version

— Maintain all path lengths; quadratic time

e Partial version (does not remove all inconsistent edges)

— Maintain and check bounds (longest and shortest paths); linear time
23



Node refinement for Among
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For each layer in MDD, we first apply edge filter, and
then try to refine

" consider incoming edges for each node

= split the node if there exist incoming edges that are
not equivalent (w.r.t. path length)

" in other words, need to identify equivalence classes

Example:

= We will propagate Among({x,,x,,X3,%,},11},2,2) through
a BDD of maximum width 3

24
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{0} {1}

{0,1}
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{0,1}

O
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e Multiple among constraints
— 50 binary variables total

— 5 variables per among constraint, indices chosen from normal
distribution with uniform-random mean in [1..50] and stdev 2.5,
modulo 50 (i.e., somewhat consecutive)

— Classes: 5 to 200 among constraints (step 5), 100 instances per class

* Nurse rostering instances (horizon n days)
— Work 4-5 days per week
— Max A days every B days
— Min C days every D days
— Three problem classes

= Compare width 1 (traditional domains) with increasing widths
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Multiple Amongs: Backtracks epper
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Multiple Amongs: Running Time cpper
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Nurse rostering problems epper
Width 1 Width 4 Width 32
Size BT CPU BT CPU BT CPU
Class 1 40 61,225 55.63 8,138 12.64 3 0.09
80 175,175 442 .29 5,025 44.63 11 0.72
Class2 40 179,743 173.45 17,923 32.59 4 0.07
80 179,743 459.01 8,747  80.62 2 0.32
Class3 40 91,141 84.43 5,148 9.11 7 0.18
80 882,640 2,391.01 33,379 235.17 55 3.27

32
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Employee must work at most 7 days every 9 consecutive days

X1 Xy X3 Xy X5 Xg X5 Xg Xg | X0 | X171 | X12

0 < X HXo+ ... #Xg< 7

0 < Xy*+X3+ ... X, <7
2743 10 > =: Sequence([X,,X,...,X1,], =9, S={1}, I=0, u=7)
0 < Xg+X,+ ... +X ;<7

0 <X, +Xct+ ... +X, <7 )

Sequence(X, q,S, Lu)y:= /N (<3 _.(xeS)su

|X’[=q l

Among(X, S, [, u)
33
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MDD Representation for Sequence epper

X1

« Equivalent to the DFA
representation of
Sequence for domain
propagation

[V.H. et al., 2006, 2009]

X3

e « Size O(n29)

x5

Xg

Exact MDD for Sequence(X, g=3, S={1}, (=1, u=2) >



MDD Filtering for Sequence
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Goal: Given an arbitrary MDD and a Sequence constraint, remove
all inconsistent edges from the MDD (i.e., MDD-consistency)

Can this be done in polynomial time?

Theorem: Establishing MDD consistency for Sequence on an
arbitrary MDD is NP-hard

(even if the MDD order follows the sequence of variables X)

Proof: Reduction from 3-SAT

Next goal: Develop a partial filtering algorithm, that does not
necessarily achieve MDD consistency

35



Sequence(X, g, S, [, u) with X = x, x,, ..., X,

Introduce a ‘cumulative’ variable y; representing the sum
of the first ({ variables in X

Yo=0
Yi=VYiq1 + (x€S) for (=1..n

Then the among constraint on [x,,;,..., X;,,] is equivalent to

LS Yig— Y
Yieg—Yis u for(=0.n-q

[Brand et al., 2007] show that bounds reasoning on this decomposition
suffices to reach Domain consistency for Sequence (in poly-time)

36
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MDD filtering from decomposition epper
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———- 20

Sequence(X, g=3, S={1}, [=1, u=2)

Approach

« The auxiliary variables y; can be
naturally represented at the
nodes of the MDD - this will be
our state information

« We can now actively filter this
node information (not only the
edges)
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MDD filtering from decomposition epper

X2

y2

.1'3

V3

X 4

V4

X5

Y5
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Sequence(X, g=3, S={1}, [=1, u=2)

[yz':yi—1+xi ]

l<ys-yp<2
L2y,-y;£2
Lys—y,<2
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MDD filtering from decomposition epper
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Sequence(X, g=3, S={1}, [=1, u=2)

Yi=VYi1t X
[15)/3—)/052]
L2y,-y;£2

1<yc—y,<2
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MDD filtering from decomposition
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Sequence(X, g=3, S={1}, [=1, u=2)

Yi=Yi1t X
l<ys-yp<2
[15)/4_)/152]
Lys—y,<2

40



Carnegie Mellon

MDD filtering from decomposition epper
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Sequence(X, g=3, S={1}, [=1, u=2)

Yi=Yi1t X
l<ys-yp<2
L2y,-y;£2

[15)/5_)/252]
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MDD filtering from decomposition epper
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12 - R =y . +X
/ \ Yi=Yi1* X
y2 0 ) 2 1)
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X3 :
i L2y,-y;£2
i (1) 2) C2)
] - I - g 1< Y=V <2
| |
_ |
X | |
o !
I .
vi ) > 0 This procedure does
i -7 not guarantee MDD
X5 | consistency
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Analysis of Algorithm
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e |nitial population of node domains (y variables)
— linear in MDD size

e Analysis of each state in layer k
— maintain list of ancestors from layer k-g

— direct implementation gives O(gW?) operations per
state (W is maximum width)

— need only maintain min and max value over
previous g layers: O(Wq)

e One top-down and one bottom-up pass

43



Experimental Setup
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e Decomposition-based MDD filtering algorithm

— Implemented as global constraint in IBM ILOG CPLEX CP
Optimizer 12.3

e Evaluation
— Compare MDD filtering with Domain filtering

— Domain filter based on the same decomposition
(achieves domain consistency for all our instances)

— Random instances and structured shift scheduling instances

e All methods apply the same fixed search strategy
— lexicographic variable and value ordering
— find first solution or prove that none exists

44



Random instances
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« Randomly generated instances
— n=20-48 variables
— domain size between 10 and 30
— 1,2, 5,7, or 10 Sequence constraints
— g random from [2..n/2]
— u—lrandom from 0 to g-1
— 360 instances

« Vary maximum width of MDD
— widths 1 up to 32

45
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Random instances results epper
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Random instances results (cont’d)

MDD Filtering

MDD Filtering
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Shift scheduling instances
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Shift scheduling problem for n=40, 50, 60, 70, 80 days
Shifts: day (D), evening (E), night (N), off (O)

Problem type P-I

— work at least 22 day or evening shifts every 30 days
Sequence(X, g=30, S= {D, E}, (=22, u=30)

— have between 1 and 4 days off every 7 consecutive days

Sequence(X, g=7, S={0}, [=1, u=4)

Problem type P-II

— Sequence(X, g=30, S={D, E}, (=23, u=30)
— Sequence(X, g=5, S={N}, (=1, u=2)

48
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MDD Filter versus Domain Filter epper
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Instance Domain filtering MDD - width 1 MDD - width 2 MDD - width 8
n backtracks time backtracks time backtracks\ time  backtracks time )
Type P-I 40 17,054 0.36 17,054 0.61 1,213| 0.07 0 0.00
50 17,054 0.42 17,054 0.75 1,213| 0.09 0 0.00
60 17,054 0.54 17,054 0.90 1,213 0.11 0 0.01
70 17,054 0.58 17,054 1.04 1,213 0.12 0 0.01
80 17,054 0.66 17,054 1.26 1,213 0.15 0 0.01
Type P-Il 40 126,406 2.00 126,406 4.66 852 0.08 0 0.00
50 126,406 2.36 126,406 5.90 852 0.09 0 0.00
60 126,406 2.86 126,406 7.43 852 0.11 0 0.00
70 126,406 3.04 126,406 8.38 852 0.13 0 0.01
80 \ 126,406: 3.48 126,406 9.46 f 852 : 0.15 0 0.01
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Constraint-Based Scheduling
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e Disjunctive scheduling may be viewed as the ‘killer
application’ for CP
— Natural modeling (activities and resources)

— Allows many side constraints (precedence relations, time
windows, setup times, etc.)

— State of the art while being generic methodology

e However, CP has some problems when

— objective is not minimize makespan (but instead, e.g.,
weighted sum)

— setup times are present _
Heinz & Beck [CPAIOR 2012]

- .. compare CP and MIP

e What can MDDs bring here?

51



Disjunctive Scheduling

e Sequencing and scheduling of activities on a resource

o Activities 0 ! 2 3 4
— Processing time: p, Activity 1  [E—— -
— Release time: .,
. o e r
— Deadline: d. Activity 2 C —

— Start time variable:s;,  Activity 3

T

a—

* Resource
— Nonpreemptive
— Process one activity at a time

52



Common Side Constraints
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e Precedence relations between activities

e Sequence-dependent setup times

e Induced by objective function
— Makespan
— Sum of setup times
— Sum of completion times
— Tardiness / number of late jobs

53



Inference

SCHOOL OF BUSINESS

e |[nference for disjunctive scheduling

— Precedence relations

— Time intervals that an activity can be processed
e Sophisticated techniques include:

— Edge-Finding

— Not-first / not-last rules

0 1 2 3 4
Activity 1 | ———— 3

e Examples: 1K 3
Activity 2 [ d

S;23
Activity 3

T

a—

54



MDD:s for Disjunctive Scheduling
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Our three main considerations: Cire & v.H. [2012]

e Representation

— How to represent solutions of disjunctive
scheduling in an MDD?

e Construction

— How to construct this relaxed MDD?

e Inference techniques
— What can we infer using the relaxed MDD?

55



MDD Representation
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e Natural representation as ‘permutation MDD’

e Every solution can be written as a
permutation &

. activity sequencing in the resource

Ty, Ty, M3, ey T

e Schedule is implied by a sequence, e.g.:

starty, = starty,  +pg,_, 1=2,..,n

56



MDD Representation

Act r. d. P,
1 0 3 2
2 4 9 2
3 3 8 3

Path {1} — {3} —{2}:

O <start; <1
6 <start, <7

3 Sstart; €5

57
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Exact MDD Compilation epper
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Theorem: Constructing the exact MDD for a Disjunctive
Instance is an NP-Hard problem

Nevertheless, there are interesting restrictions, e.g. (Balas [99]):

TSP defined on a complete graph

Given a fixed parameter k, we must satisfy

| L j if j—i=k forcitiesi,j

Lemma: The exact MDD for the TSP above has O(n2¥) nodes



MDD Propagation

We can apply several propagation algorithms:
e Alldifferent for the permutation structure

e Earliest start time / latest end time

e Precedence relations

SCHOOL OF BUSINESS
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Propagation (cont’d) epper
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e State information at
each node i
— labels on all paths: A,
— labels on some paths: S,

— earliest starting time: E,
— latest completion time: L,

{1,2,3,4,5} T,

e Top down example for
arc (u,v)

60



Alldifferent Propagation

All-paths state: A,

» Labels belonging to all paths
from node r to node u

» A, = {3}
» Thus eliminate {3} from (u,v)

[Andersen et al., 2007]

{12}

{ 1,2/3),4,5}

Ty

61



Alldifferent Propagation

Some-paths state: S,

» Labels belonging to some
path from node r to node u

» S, =11,2,3}
» ldentification of Hall sets

» Thus eliminate {1,2,3} from
(u,v)

62



Earliest Completion Time: E,

» Minimum completion time
of all paths from root to
node u

Similarly: Latest Completion
Time

{12}

63



Act

=
o
o

1 0 3 2
2 3 7 3
3 1 3 3
4 5 6 1
5 2 10 3

» Eliminate 4 from (u,v)
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More MDD Inference

SCHOOL OF BUSINESS

Theorem: Given the exact MDD M, we can deduce all implied
activity precedences in polynomial time in the size of M

For a node v,
» A}:values in all paths from root to v

» Al: values in all paths from node v to terminal

Precedence relation i < j holds if and only if
(J & Aﬁ) or (i & Aﬁ) for all nodes uin M

Same technique applies to relaxed MDD
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Communicate Precedence Relations

SCHOOL OF BUSINESS

1. Provide precedence relations from MDD to CP
— update start/end time variables
— other inference techniques may utilize them

2. Filter the MDD using precedence relations from other
(CP) techniques
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MDD Refinement cpper

SCHOOL OF BUSINESS

e For refinement, we generally want to identify
equivalence classes among nodes in a layer

e Theorem:

Let M represent a Disjunctive Instance. Deciding if two nodes
uandvin M are equivalent is NP-hard.

e |n practice, refinement can be based on
— earliest starting time
— latest earliest completion time r.+p.
— alldifferent constraint (A, and S, states)
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Experiments

SCHOOL OF BUSINESS

e MDD propagation implemented in IBM ILOG CPLEX
CP Optimizer 12.4 (CPO)

— State-of-the-art constraint based scheduling solver
— Uses a portfolio of inference techniques and LP relaxation

e Main purpose of experiments
— where can MDDs bring strength to CP
— compare stand-alone MDD versus CP
— compare CP versus CP+MDD (most practical)
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Problem classes

SCHOOL OF BUSINESS

e Disjunctive instances with
— sequence-dependent setup times
— release dates and deadlines

— precedence relations

e Objectives (that are presented here)
— minimize makespan
— minimize sum of setup times

e Benchmarks

— Random instances with varying setup times
— TSP-TW instances (Dumas, Ascheuer, Gendreau)
— Sequential Ordering Problem

69



Carnegie Mellon

Test 1: Importance of setup times epper

SCHOOL OF BUSINESS

100 .
3 Random instances
- 15 jobs
10 | | - lex search

= ‘ - MDD width 16
-~ - min makespan
S
— 1 + ]
1)
s
O ]
(a1

0.01

0 0.2 04 0.6 0.8 1 1.2 14 1.6
Importance of setup times
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Test 2: Minimize Makespan

SCHOOL OF BUSINESS

e 229 TSPTW instances with up to 100 jobs
e Minimize makespan

e Time limit 7,200s

e Max MDD width is 16

# instances solved by CP: 211
# instances solved by pure MDD: 216
# instances solved by CP+MDD: 225

71



Carnegie Mellon

Minimize Makespan: Fails epper

SCHOOL OF BUSINESS

Fails: CPO x MDD +CPO Width 16

108 I T T T T T T T y T T T T T
I plot only on
| 1 instances that
107 r -]
! ! were solved
| 1 by all methods
10° ]
(._n r _
= i ]
o105 ;
@) i ]
o I ]
9 10t ¢ . ]
() | g x 1
() L X x
E © _ ’%(x xx ) X xxx g xxxx *x _
X X X
I x x K Xx x X X T
102 - >;<>< g& ”&;‘x X X % 7
L x >><< % 9 ¥ » _
L X XX % ’52( x X i
101 - x;i X X xx X X .
L& ]
P
lf L L | ! L | L L | ! ! | L L | ! | | ! L | L L !
101 102 103 104 10° 106 107 108
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Minimize Makespan: Time epper

SCHOOL OF BUSINESS

Time: CPO x MDD+ CPO Width 16

104 L T T T T T T | T T T T T ™
103 - .
) : _
~— 2 | |
()] 10° ]
E 1 ]
- X X X
O 10+ 3 x x Xy % ]
Q. X xxx % X xx
L_Ie !: xXX XX ¥ XX X X X X x X
x ¥ x xX * X x
BT _
E i i X x . X
L X gx = % *
1 8 {!g(”‘
10 X xx X x « _
I % % X X %
X x XX X
X X X
102 [ * X i
102 101 1 10 102 103 104
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SCHOOL OF BUSINESS

Min sum of setup times: Fails epper

le+08 — T T T T T y T T T y 7 T T
Dumas/Ascheuer
le+07 | 1 instances
: | -20-60 jobs
" le+06 | 1 - lex search
% , 4 -MDD width: 16
4— 100000 X%
D L N
X
CD L ]
S 10000 | X
5 X >x<§
Q I X )
S 1000 | x X+
[a ¥ X
_ % _
100 | 5 XX xx |
X X
i x X X X X ]
10 L *x X ]
, v _
X X X
X
1 x X‘ | L X.I L L | L L M| L L | L L | L L | L L L
1 10 100 1000 10000 100000 le+06 le+07 le+08

CPO fails
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Min sum of setup times: Time epper
10000 j Dumas/Ascheuer
| instances

1000 | 1 -20-60jobs
D _ x| -lexsearch
v 100 | x| - MDD width: 16
& i X ]
= | x
)
Q 10 — XXXX&—:
= X x
L 1 =
= X
o _ XXX |

0.1 | . X .

L x >2< x x 4
r X XX X
0.01 Lo ege L
0.01 0.1 1 10 100 1000 10000
CPO time (s)
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Instances Dumas (TSPTW) epper

SCHOOL OF BUSINESS

CPO CPO+MDD
Instance Cities Backtracks | Time (s) | Backtracks | Time (s)
n40w40.004 40 480,970 50.81 18 0.06
n60w20.001 60 908,606 199.26 50 0.22
n60w20.002 60 84,074 14.13 46 0.16
n60w20.003 60 > 22,296,012 > 3600 99 0.32
n60w20.004 60 2,685,255 408.34 97 0.24

minimize sum of setup times MDDs have maximum width 16
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Sequential Ordering Problem

SCHOOL OF BUSINESS

e TSP with precedence constraints (no time windows)

e |nstances up to 53 jobs

e Time limit 1,800s

e CPO: default search

e MDD+CPO: search guided by MDD (shortest path)
e Max MDD width 2,048
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Sequential Ordering Problem Results lepper

SCHOOL OF BUSINESS

CPO MDD+CPO
Instance Known Bounds Best Solution Time Best Solution Time
brl7.10.sop 55 55 TL 55 4.64
brl7.12.sop 55 55 TL 55 4.29
ESCO7.sop 2125 2125 0 2125 0.07
ESC11.sop 2075 2075 TL 2075 1.25
ESC12.s0p 1675 1675 TL 1675 1.48
ESC25.s0p 1681 1747 TL 1681 34.89
ESC47.sop 1288 2044 TL 1776 TL
ft53.1.s0p [7438,7531] 8028 TL 10376 TL
ft53.2.sop [7630,8335] 8774 TL 11498 TL
ft53.3.s0p [9473,10935] 10709 TL 11133 TL * CP improved bound
ft53.4.s0p 14425 14504 TL 14425 154.3
p43.1.sop 27990 28230 TL 28140 420.3
p43.2.s0p [28175,28330] 28480 TL 28480 776.67| * closed by MDD
p43.3.s0p [28366,28680] 28855 TL 28835 251.4 | * closed by MDD
p43.4.s0p 83005 nosol TL 83005 44.73
prob.42.sop 243 302 TL 256 TL
rbg048a.sop 351 351 TL 386 TL
ry48p.1.sop [15220,15805] 16940 TL 17633 TL
ry48p.2.sop [15524,16666] 18153 TL 18153 TL
ry48p.3.sop [18156,19894] 21116 TL 22382 TL
ry48p.4.sop [29967,31446] 31522 TL 31446 112.67\ * closed by MDD /
— \. J N
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Summary for MDD-based CP

SCHOOL OF BUSINESS

e MDDs provide substantial advantage over traditional
domains for constraint propagation
— Strength of MDD can be controlled by the width

— Huge reduction in the amount of backtracking and solution
time is possible

— Particular examples: among, sequence, and disjunctive
scheduling constraints
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SCHOOL OF BUSINESS

MDDs for Discrete Optimization
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Motivation

SCHOOL OF BUSINESS

e Limited width MDDs provide a (discrete)
relaxation to the solution space

e Can we exploit MDDs to obtain bounds for
discrete optimization problems?
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SCHOOL OF BUSINESS

Handling objective functions epper

(1) x; +x, +x321

X1
Suppose we have an objective

X, function of the form

min 2. f.(x:)

%3 for arbitrary functions f.

X, In an exact MDD, the optimum
can be found by a shortest r-s
path computation

X5

(edge weights are f,(x;) )
s (1,0,1,1,0) 82



Approach

SCHOOL OF BUSINESS

e Construct the relaxation MDD using a top-down
compilation method

e Find shortest path — provides bound B

e Extension to an exact method

1. Isolate all paths of length B, and verify if any of these
paths is feasible”

if not feasible, setB:=B+1andgotol
otherwise, we found the optimal solution

" Feasibility can be checked using MDD-based CP
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Case Study: Independent Set Problem lepper

SCHOOL OF BUSINESS

e Given graph G = (V, E) with vertex weights w.

e Find a subset of vertices S with maximum total weight
such that no edge exists between any two vertices in S

max 2 WX
s.t. x+x<1  forall (i,j)inE

x; binary  foralliinV
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0 state information: eligible vertices

—:1 r l/
4 {1I2I3I4I5}
X,
(3,4) 9 {2345
X, k
) (3.4} {5} " {3,4,5)
X3 . \
{4} i
%) ® Blg O} @45}
X4
Merge equivalent nodes
Xs
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Node Merging epper

SCHOOL OF BUSINESS

20 state information: eligible vertices D o)
—:1 r 1/
) {1,2,3,4,5) (3)
(3,4) @ {2,3,4,5)
X,
) (3.4) (5} "y 1345}
X3
Z (4,5}
X4 _
Theorem: This procedure
> generates an exact MDD
X5 Relaxation MDD: merge

non-equivalent nodes when

the given width is exceeded %

[Bergman et al., 2012]
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Relaxation MDD epper

SCHOOL OF BUSINESS

R Exact MDD Relaxation MDD (width < 3)

—:1
r " {1,2,3,4,5})
X4
{3 4} \\\ {2131415}
X, ! \
{3’4} :l {5} \\\ {31415}
X3 X : \
i (4,5}
@y, 5} {5} 4,
Z O @ O
X4
Xg

87



Carnegie Mellon

Relaxation MDD epper

SCHOOL OF BUSINESS

----:0 Exact MDD
—:1 r

Relaxation MDD (width < 3)

" {1,2,3,4,5}

X4

{3’4} N {2131415}
Xy \

{3’4} E \\\ {31415}
X3

%)
X4 ,
> PeE)

X '
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Relaxation MDD epper

SCHOOL OF BUSINESS

X5

(0,0,0,1,0) 2
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Relaxation MDD epper

SCHOOL OF BUSINESS

----:0 Exact MDD
—:1 r

Relaxation MDD (width < 3)

r

(1,0,0,0,1) »
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Evaluate Objective Function 1epper
_cl) Exac’: MDD 5 , Relaxatior: MDD (width < 3)
8§ O)—46 )
X2 :

91

max f(x) = 12 max f(x) = 13



Experimental Results

SCHOOL OF BUSINESS

e |mpact of maximum width on strength of bound
(and running time)

e Compare MDD bounds to LP bounds
— IBM ILOG CPLEX 12.4

— root node relaxation, no presolve, aggressive clique cuts,
MIPemphasis

e Time Limit 3,600s

e DIMACS cligue instances (unweighted graphs)
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Impact of width on relaxation epper

SCHOOL OF BUSINESS

upper bound time (s)

150

mEid 1‘elaxati0;1 bound T+
140 F
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80 F

KHJH— T
[
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MDD versus LP bounds: Quality lepper
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MDD versus LP bounds: Time epper

SCHOOL OF BUSINESS
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Restriction MDDs

SCHOOL OF BUSINESS

e Relaxation MDDs find upper bounds for independent
set problem

e Can we use MDDs to find lower bounds as well (i.e.,
good feasible solutions)?

e Restriction MDDs represent a subset of feasible
solutions

— we require that every r-s path corresponds to a feasible
solution

— but not all solutions need to be represented

e Goal: Use restriction MDDs as a heuristic to find good
feasible solutions
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Creating Restriction MDDs

SCHOOL OF BUSINESS

Using an exact top-down compilation method, we can
create a limited-width restriction MDD by

1. merging nodes, or
2. deleting nodes
while ensuring that no solution is lost
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Node merging by example epper

SCHOOL OF BUSINESS

Restriction MDD (width < 3)

-:0
i D0
" {1,2,3,4,5}
\ Pe
X1 O—@
{3 4} \\\ {2131415}
Xy , .
3.4} | {5} \, {3,4,5}
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S 6E 5/ M4s)
Z “o Ve o
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Node merging by example epper

SCHOOL OF BUSINESS

Restriction MDD (width < 3)

-:0
i D0
" {1,2,3,4,5}
\ Pe
X1 O—@
{3 4} \\\ {2131415}
Xy , .
3.4} | {5} \, {3,4,5}
X3

99



Node merging heuristics

SCHOOL OF BUSINESS

e Random

— select two nodes {u,, u,} uniformly at random
e Objective-driven

— select two nodes {u,, u,} such that

f(u,), f(u,) < f(v) for all nodes v # u,, u, in the layer

e Similarity

— select two nodes {u,, u,} that are ‘closest’

— problem dependent (or based on semantics)
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Node deletion by example epper

SCHOOL OF BUSINESS

Restriction MDD (width < 3)
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Node deletion heuristics

SCHOOL OF BUSINESS

e Random
— select node u uniformly at random
e Objective-driven
— select node u such that
f(u) < f(v) for all nodes v # uin the layer

¢ Information-driven
— problem specific
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Experimental Results

Comparison to greedy heuristic

— select vertex v with smallest degree and add it to
independent set

— remove v and its neighbors and repeat

DIMACS instance set

MDD version 1: maximum width 100

— time comparable to greedy heuristic (max 0.25s)

MDD version 2: maximum width 8,000,000/n

— maximum time 13s

SCHOOL OF BUSINESS
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Greedy versus MDD: Quality

% difference from greedy upper bound
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Summary for MDD-Optimization epper

SCHOOL OF BUSINESS

e Limited-width MDDs can provide useful bounds
for discrete optimization

— The maximum width provides a natural trade-off
between computational efficiency and strength

— Both lower and upper bounds

— Generic discrete relaxation and restriction method
for MIP-style problems

e So far, mainly combinatorial applications

— Independent Set Problem, Set Covering Problem,
Set Packing Problem
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Open issues

SCHOOL OF BUSINESS

e Extend application to CP

— Which other global constraints are suitable? (Cumulative?)
— Can we develop search heuristics based on the MDD?

— Can we more efficiently store and manipulate approximate
MDDs? (Implementation issues)

— Can we obtain a tighter integration with CP domains?

e MDD technology

— Variable ordering is crucial for MDDs. What can we do if the
ordering is not clear from the problem statement?

— How should we handle constraints that partially overlap on
the variables? Build one large MDD or have partial MDDs

communicate?
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Open issues (cont’d)

SCHOOL OF BUSINESS

e Formal characterization
— Can MDDs be used to identify tractable classes of CSPs?

— Can we identify classes of global constraints for which
establishing MDD consistency is hard/easy?

— Can MDDs be used to prove approximation guarantees?

— Can we exploit a connection between MDDs and tight LP
representations of the solution space?

e Optimization

— Approximate MDDs can provide bounds for any nonlinear
(separable) objective function. Demonstrate the
performance on an actual application.
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Open issues (cont’d)

SCHOOL OF BUSINESS

e Beyond classical CP

— How can MDDs be helpful in presence of uncertainty?
E.g., can we use approximate MDDs to represent policy
trees for stochastic optimization? [Cire, Coban, v.H., 2012]

— Can we utilize approximate MDDs for SAT?

— Can MDDs help generate nogoods, e.g., in lazy clause
generation?

— Can we exploit a tighter integration of MDDs in MIP solvers?

e Applications

— So far we have looked mostly at generic problems. Are there
specific applications for which MDDs work particularly well?

(Bioinformatics?)
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Summary

SCHOOL OF BUSINESS

What can MDDs do for discrete optimization?
e Compact representation of all solutions to a problem
e Limit on size gives approximation

e Control strength of approximation by size limit

MDDs for Constraint Programming

e MDD propagation natural generalization of domain propagation
e Orders of magnitude improvement possible

MDDs for optimization (CP/ILP/MINLP)
e MDDs provide discrete relaxations
e Much stronger bounds can be obtained in much less time

Many opportunities: search, stochastic programming, integrated

methods, theory, ... 109



